Beşiktaş Forum  ( 1903 - 2013 ) Taraftarın Sesi


Geri git   Beşiktaş Forum ( 1903 - 2013 ) Taraftarın Sesi > Kültür , Sanat Turizm, Gezi ve Seyahat Rehberi > Biyografi > Bilim-Teknoloji

Cevapla
 
LinkBack Seçenekler Stil
Alt 18-01-2007, 18:35   #1
 
OnuR - ait Kullanıcı Resmi (Avatar)
 
Ömer Hayyam

Öklit’in paralel postulatı üzerine çalışmaları ile matematik dünyasında oldukça iyi bilinen Ömer Hayyam (1048-1131), ülkemizde ve Fitzgerald’ın çevirisi (1859) ile Batı dünyasında Rubaiyat’ın şairi olarak da meşhurdur. Hayyam’a olan ilgi oldukça yoğundur; sözgelimi, Batı Felsefesi Tarihi adlı çalışmasında Bertrand Russell (1945: s. 423), Fars kültürünün entelektüel ve sanatsal başarılarını teslim ettikten sonra, Hayyam hakkında “matematikçi ve şair olarak bildiğim yegane kişi” diye övgü ile bahsedecektir.
Yakın zamanlarda, Ömer Hayyam’ın çalışmalarının yeniden basımları, onun matematiksel çalışmalarının önemini teyit etti. Hâli hazırda, Hayyam’ın matematiksel çalışmaları üç kategoride değerlendirilmektedir: 1- temel cebirsel geometrinin ilk formülasyonu, 2- oranlar kuramındaki çalışmaları, ve 3- paraleller kuramındaki çalışmaları. Sözkonusu yeni bulgularla, Hayyam’ın matematiksel çalışmalarının, geçmişte bilinenden daha da önemli olduğunu açığa çıkmıştır. Birleşmiş Milletler Eğitim, Bilim ve Kültür Örgütü (UNESCO), Hayyam’ın başarılarını kutlamak için 1999 yılında uluslararası bir kolokyum düzenlemiş ve ardından Hayyam’ın önemli matematiksel çalışmalarının basılmasına karar vermiştir. UNESCO’nun “Beyt-ül Hikme” adlı projesi kapsamında, Paris’te yaşayan Mısır asıllı meşhur bilim tarihçisi Roshdi Rashed ve Hayyam üzerine hazırladığı doktora çalışması ile bilinen Bijan Vahabzadeh, Hayyam’ın matematikle ilgili mevcut ve şimdiye kadar ulaşılamayan önemli el yazımı eserlerinin tenkitli neşrini (edisyon kritik) üstlenmişlerdir. Bahsi geçen kritik basım, önce Fransızca daha sonra İngilizce olarak okuyucuya ulaştırılmıştır.
Rashed ve Vahabzadeh’nin çalışması iki ana kısımdan oluşmaktadır: 1.) Cebirsel Denklemlerin Geometrik Kuramı ve 2.) Paraleller Kuramı ve Orantı Kuramı. ‘Cebirsel Denklemlerin Geometrik Kuramı’ başlıklı birinci bölümde, okuyucu ilk olarak Hayyam’ın matematiksel çalışmaları ve bu çalışmalar ile Descartes’ınkilerin kıyaslaması hakkında bilgilendirir. Rashed ve Vahabzadeh’in belirttiği gibi, Hayyam’ın biyografisi efsane ve mitlerle karıştığından (s. 3-5), genel olarak Hayyam’ın hayatı hakkında çok az malumata sahibiz. Sözgelimi, popüler bir efsaneye göre, Haşhaşilerin kurucusu olan Hasan Sabbah ile Ömer Hayyam arkadaştırlar. Halbuki tarihsel olarak bu hadisenin doğru olabilmesi için, Hayyam’ın yüz yirmi yıl yaşamış olduğunu kabul etmek gerekir ki bu oldukça zayıf bir tezdir (s. 6).
Hayyam’ın hayatı hakkında malumatımızın çok sınırlı olsa da, arkasında bir kısım felsefî çalışmalar bıraktığını biliyoruz. Hayyam, kim olduğu pek bilinmeyen fakat oldukça itibar gören Rubaiyat’ın İranlı şairi ile de eşleştirilmiştir. Rubaiyat’ı kimin kaleme aldığı tarihçi ve matematik tarihçileri arasında tartışmalara neden olmuştur. Rashed şunu iddia etmektedir: “Bildiğim kadarıyla, şimdiye değin, bu iki dahiyi şair ile matematikçiyi belirleyebilmemizi sağlayacak bilgiden yoksunuz. Beyhaki, Arudi, Sefadi, İbn-ül Esir gibi tarihçi kişiler tarafından matematikçi[-Hayyam] hakkında verilen bilgilerden hiç biri, şair[-Hayyam] hakkında bir şeyden bahsetmez; öte yandan, şairden bahsedenler ise matematikçiden zerre kadar bahsetmezler.” (s. 5) Rashed’e göre, şair-Hayyam ile matematikçi-Hayyam’ın birleştirilmesi, tarihsel olarak Rubaiyat’ın yazılmasından çok sonraya denk gelir. Bu bilgiye göre, şair-Hayyam ile matematikçi-Hayyam’ın aynı kişi olduğunu kabul etme lüksünden yoksunuz. Bu, şair-Hayyam ile matematikçi-Hayyam ayrı kişilerdir anlamına gelmez; Rashed’in dediği gibi (s. 5), konuyu açıklığa kavuşturacak belgeler elimizde olana dek, bu iki kişinin aynı olduğunu söylemenin mümkün olmadığı anlamına gelir. Şimdiye değin, matematik tarihçilerinin Rubaiyat’ın yazarı ile matematikçi ve filozof Hayyam’ı tartışmasız aynı kişi kabul etmeleri, onların İbn-ül Esir ve Beyhaki gibi klasik İslam tarihi kaynaklarına pek aşina olmadıklarından kaynaklanıyordu denebilir.
Çalışmanın bu bölümü, Hayyam’ın hayatına değindikten sonra, onun çalışmalarının bir listesini sunmakta ve cebirsel projesini ele almaktadırlar. Yazarlar şöyle devam etmektedirler: “Hayyam cebirsel geometrinin başlangıcını, bir keresinde bir çemberin çeyreğini bölme üzerine çalışırken ve ikinci kez cebir üzerine risalesiyle olmak üzere iki kez kaydeder.” (s. 7). Müslüman matematikçilerin matematiksel çalışmaları ile ilgili şimdiye kadar yapılan çalışmalarda genel olarak belli kişiler üzerinde durulmuş ve o kişilerin çalışmaları bireysel olarak ele alınmıştır. Böylece, her bir matematikçi diğerlerinden soyutlanarak ele alınmıştır. Oysa, Rashed’e göre yapılması gereken, bu matematikçiler ve çalışmalar arasındaki ilişkinin izini sürmektir. Rashed’in ortaya koyduğu eserler sayesinde, birinci milenyumun sonu ile ikinci milenyumun başındaki matematikçilerin çalışmaları arasındaki süreklilik ve bağlantılar daha iyi anlaşılmıştır. Çalışmada yazarlar Hayyam’ın çalışmalarını, Hayyam’ın entelektüel selefleri olan Sabit bin Kurra’nın (836-901), al-Hazin’in (900-971), Ebu el-Jud’un ve İbni Heysem’in (ö.1040’dan sonra) çalışmaları ve halefleri olan Şerafettin Tusi (1135-1213) ve Descartes’ın (1596-1650) çalışmaları bağlamına oturturlar (örn. s. 7-11).
Yazarlar, Descartes’ın diğer çalışmaları ve Geometri adlı eseri ile Hayyam’ın çalışmalarını kıyaslarlar (s. 12-29). Descartes’ın çalışmalarının Hayyam ve Tusi’nin çalışmaları göz önüne alınaraktan yeniden ele alınması gerektiğini vurgulayaraktan, Descartes’ın cebirsel denklemlerin geometrik kuramı hakkındaki çalışmalarının Hayyam’ın çalışmalarının bir tamamlayıcısı olarak görülmesi gerektiği iddia ederler: Descartes, Hayyam’ın çalışmalarını süzmüş, genelleştirmiş ve onu “mümkün mantıksal sınırlarına” ulaştırmıştır; fakat, “aslında özüne ulaşamamıştır” (s. 20). Yazarlar daha sonra Hayyam’ın Cebir Risalesi ve Çemberin Çeyreğini Bölme Üzerine İnceleme’si hakkında kendi yorumlarını sunarlar daha sonra bizatihi bu eserlerin çevirisini sunarlar. ‘Matematiksel Şerh’ (s. 31-108) başlıklı bölüm Hayyam’ın çalışmasını Öklit, Ebu el-Jud, el-Kuhi, İbn-ül Heysem, İbni Kurra, el-Tusi ve Descartes gibi önemli figürlerin çalışmaları ile ilişkin olarak sunar. Daha önce değinildiği üzere, Hayyam’ın çalışmasının yerli yerine oturtulması için böyle bir analiz vazgeçilmezdir.
Cebir Risalesi’nin İngilizce metni Fransızca’sından çevrilmiştir. İngilizce metin sadece çeviri metni içermesine karşın, Fransızca metnin hem Arapça orijinalini hem de Fransızca çevirisini içerdiği not edilmiştir. Fransızca metin hazırlanırken Hayyam’ın metninin bilinen bütün el yazımlarına başvurulmuştur. Çemberin Çeyreğini Bölme Üzerine İnceleme’nin Fransızca’sı Tahran Üniversitesi Kütüphanesinde bulunan bilinen tek orijinal el yazımını esas almıştır. Rashed sözkonusu metni editio princes kılmış (bilinen ilk basımını yapmış) ve ilk çevirisini yapmıştır (s. 109-10). Şunu da not etmekte fayda görüyorum ki, bu iki metnin daha önce Rashed ve Djebbar tarafından Arapça basımı yapılmıştır. (The Works on Algebra of al-Khayyam, Sources and Studies in the History of Arabic Mathematics, 3. University of Aleppo, Institute for the History of Arabic Sciences, Aleppo, 1981.)
‘Paraleller Kuramı ve Orantı Kuramı’ başlıklı ikinci bölümde, Hayyam’ın Öklit’in beşinci (paralel) postulatı ve orantı kuramı hakkındaki incelemeleri ele alınmış. Hayyam matematikçiler arasında en meşhur olduğu başarısı Öklit’in paralel postulatı üzerine yaptığı çalışmalardır. Elementler’de Öklit’in beşinci postulatı olarak şu ifade ile karşılaşırız: “Eğer düz bir çizgi, diğer iki düz çizgiyi bir kenardaki iki iç açının toplamı iki dik açıdan küçük olacak şekilde keserse, şu halde iki düz çizgi yeterince uzatıldığında, iki dik açıdan küçük iç açıların olduğu ilk çizginin aynı tarafında kesişirler.” (s. 183). Her ne kadar bu ifadenin doğruluğundan kuşku duyulmadıysa da, Öklit’in diğer postulatları ile kıyaslandığında daha çok bir önermeye benziyordu. Daha çok bir önermeye benzediği içindir ki Hayyam’dan Legendre’ye kadar onlarca matematikçi doğruluğunu bir ispat ile sunmaya çalışmışlardır.
Kitabın bu ikinci kısmında, kısa bir girişten sonra “Öklit’in Elementler’i Hakkında Hayyam’ın İncelemesine Matematiksel Şerh” başlıklı kısım ve Hayyam’ın metninin İngilizce çevirisi yer almaktadır. Hayyam’ın bu metni Bahabzadeh’nin doktora tezinin konusudur ve Bahabzadeh’nin metni editio princeps’tir (s. x). Metin hazırlanırken biri Leiden Üniversite Kütüphanesinde öteki Paris’teki la Bibliotheque Nationale’deki el yazımları esas alınmıştır (s. 215). Yazarlarımızın Hayyam’dan çeviri yaparken esas aldıkları stili bahsetmekte fayda vardır: “Biz çevirimizde, metni herhangi bir şekilde ‘modernleştirme’ kaygısı gütmeden, büyük bir itina ile metnin [kendisini] ve Arapça metnin ruhunu takip ettik. Biz, daha çok, modern okuyucuya, bu [kişinin] cebirsel sembolizm olmaksızın doğal bir dille kendini ifade eden bir matematikçi olduğu hissini vermek için çabaladık.” (s. 215).
Burada Hayyam’ı matematiksel çevrelerde meşhur eden paralel postulatına ilişkin akıl yürütmesine değinmekte fayda var. Hayyam’a göre kendi selefleri paralel postulatının ispatını ararken bir hata işlemişlerdir: “Filozof’tan (yani Aristo) çıkarılan bir kısım prensipleri ihmal etmek” (s. 185). Hayyam kendi çözümünde düz çizgi ve doğrusal açı kavramlarının dolayımsız (immediate) sonuçları olan üç prensibi kullanır; yani, bu prensipler dolayımsız oldukları için ispata gerek kalmaksızın kabul edilebilirler. Günümüzde bu prensiplerden ikisinin paralel postulatı ile mantıksal olarak denk olduğunu biliyoruz; yani, Hayyam paralel postulatı ispatlamak için paralel postulatının muadilini kullanmış oluyor. Bu nedenle, her ne kadar Hayyam’ın ispatı günümüzde kabul edilmese de, şunu unutmamak lazım ki Hayyam’ın analizi kendi akıl yürütmesi ile tutarlıdır: Bu prensipler paralel postulatının mantıksal dengi olabilirler; ne var ki, bu prensipler eldeki kavramların dolayımsız sonuçları iken paralel postulatı dolayımsız bir sonuç değildir! (s. 185).
‘Matematiksel Şerh’ başlıklı bölüm ve yazarların Hayyam’ın kendi metni içine düştükleri notlar ve yorumlar modern okuyucuya zor gelebilecek noktaları açıklama hususunda oldukça önem arzediyor. Kaldı ki, Hayyam’ın bizatihi kendisinin eserinde uyardığı gibi Hayyam’ı okuyacak kişinin Öklit ve Apollonius’un çalışmalarına aşina olması gerekir (s. 113). Hayyam’ın bu uyarısı dikkate alındığında yazarlarımızın Elementler ve Konikler gibi eserlere açık referanslar vermelerinin modern okuyucu için değeri daha iyi anlaşılır. Kitabın okunmasını kolaylaştıran diğer bir husus ise kitabın şahıs ve alıntılar dizinini içermesidir. Yazarların metni anlaşılır kılmak içim uğraşmalarına rağmen, şunu ifade etmeliyiz ki, denklem ve kavramları anlamak için en az lise seviyesinde iyi bir matematik bilgisi gerekmektedir. Dahası, ispatları anlamak ve ispat yapabilmek için birazcık formel matematik bilgisi faydalıdır ayrıca kimi mantıksal akıl yürütme zincirlerini takip etmek o kadar da kolay olmayabileceğini not edelim.
Sonuçta kitap sadece Müslüman bir matematikçinin çalışmalarını aydınlatmakla kalmıyor erken dönem modern matematiğin gelişimine de ışık tutuyor. Böyle bir çalışma olmaksızın, tarihçi Descartes’ın çalışmalarını yeterince anlayamaz ve dünyanın çehresini değiştiren ‘modern’ bilimin doğuşunu yanlış değerlendirmiş olur. Hayyam’ın çalışmalarının basımını üstlenerekten matematik tarihi anlayışımıza büyük bir katkı yapan UNESCO’ya teşekkür etmeliyiz. Eminim ki çalışmayı bilim ve matematik tarihçilerinin yanında bu disiplinlerle ilgili kişiler de değerli bulacaktır. Bu değerlendirme yazısını şair-Hayyam’ın bir dörtlüğü ile bitirmek güzel olurdu; ne var ki, Rashed ve Bahabzadeh’nin çalışması matematikçi-Hayyam ile şair-Hayyam’ı koşulsuz olarak aynı kişi olarak kabul etmememiz gerektiğini vurguluyor. Yine de, eğer ikinci bir Hayyam’ın var olup olmadığı sorununu şair-Hayyam’a iletmiş olsaydık, muhtemelen şöyle derdi:
“Konuşur devamlı, aklın köleleri;
Ölümüne tartışır, bu ya da şu var mıdır;
Budalalar, ruhları ekşi üzüm olana kadar kuru üzüm yer;
Halbuki, hikmet sahipleri yeni şarapta ısrar eder.”
__________________




Besiktas JK






.
OnuR Ofline   Alıntı ile Cevapla
Cevapla

Bu konuyu arkadaşlarınızla paylaşın


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık




Türkiye`de Saat: 18:53 .

Powered by vBulletin® Copyright ©2000 - 2008, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.3.2

Sitemiz CSS Standartlarına uygundur. Sitemiz XHTML Standartlarına uygundur

Oracle DBA | Kadife | Oracle Danışmanlık



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580