Beşiktaş Forum  ( 1903 - 2013 ) Taraftarın Sesi


Geri git   Beşiktaş Forum ( 1903 - 2013 ) Taraftarın Sesi > Eğitim Öğretim > Dersler - Ödevler - Tezler - Konular > Elektronik & Bilgisayar

Cevapla
 
LinkBack Seçenekler Stil
Alt 06-09-2008, 13:07   #1
ยŦยк
 
Constantin - ait Kullanıcı Resmi (Avatar)
 
Osilatörler

RC Osilatörler
Kendi kendine sinyal üreten devrelere "osilatör" denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen, testere dişi gibi sinyaller meydana getirirler. Aslında bir osilatör, kendi giriş sinyalini kendi temin eden bir yükselteç devresidir.
Genel olarak osilatörler, sinüsoidal osilatörler ve sinüsoidal olmayan osilatörler olmak üzere 2 sınıfa ayrılırlar. Sinüsoidal osilatörler, çıkışında sinüsoidal sinyal, sinüsoidal olmayan osilatörler ise kare, dikdörtgen, üçgen ve testere dişi gibi sinyaller üretirler. Kare dalga üreten osilatörler devrelerine aynı zamanda "multivibrator" adı verilir.
http://www.silisyum.net/pic/osilatorler/sekil3.26.gif
Şekil 3.26 - Temel Osilatör Blok DiyagramıBir osilatör devresinin meydana getirdiği sinyallerin veya osilasyonların (salınım) devam edebilmesi için Yükseltme, Geri Besleme, Freakns Tespit Edici 'ye ihtiyaç vardır. Bir osilatör devresinde çıkışın bir miktarı şekil 3.26 'da görüldüğü gibi girişe geri beslenmesi gerekir. Devre kayıplarının önüne geçebilmek için girişe geri beslenmesi gerekir. Devre kayıplarının önüne geçebilmek ve osilasyonların devamlılığı için kullanılması gereken geri besleme Pozitif geri besleme olmalıdır. Bir osilatörün önceden belirlenecek bir frekansta osilasyon yapabilmesi için bir frekans tespit ediciye ihtiyaç vardır. Bu frekans tespit edici devre, filtre devresi olup istenen sinyalleri geçilip, istenmeyenleri bastırır. Osilatör çıkışındaki sinyalin, genlik ve frekansının sabit tutulabilmesi için, osilatör devresindeki yükseltecin, çıkış yükü ve pozitif geri besleme için yeterli kazancı sağlaması gerekir. Genellikle güç kazancının büyük olması, giriş ve çıkış empedansının birbirine kolayca uydurulabileceği tertip olarak emiteri ortak bağlantı olarak kullanılır.
Geri besleme, bir sistemde yüksek seviye noktasından alçak seviye noktasına enerji transferidir. Geri besleme girişi arttırıcı yönde ise pozitif, azaltıcı yönde ise negatif geri beslemedir. Bir osilatörün ihtiyacı, pozitif geri beslemedir. Bir osilatördeki geri besleme, frekans tespit edici devredeki zayıflamayı dengeler.
Çıkışında sinüsoidal sinyal üreten osilatörler, alçak frekanslardan (birkaç hertz), yüksek frekanslara (109 Hz) kadar sinyal üretirler. Alçak frekans osilatör tiplerinde frekans tespit edici devre için direnç ve kondansatörler kullanılıyor ise bu tip osilatörlere "RC OSİLATÖRLER" adı verilir.
RC osilatörler, 20 Hz - 20KHz arasındaki ses frekans sahasında geniş uygulama alanına sahiptir.
http://www.silisyum.net/pic/osilatorler/sekil3.27.gif
Şekil 3.27 - RC Osilatörün Blok DiyagramıŞekil 3.27 'deki blok diyagramda RC osilatörün blok diyagramı gösterilmiştir. Blok diyagramda R-C devresi hem pozitif geri beslemeyi, hem de frekans tespit edici devreyi sağlar.
Blok diyagramdaki yükselteç devresi, emiteri ortak yükselteç devresi olduğu için A noktasındaki kollektör sinyali ile beyz (base) üzerindeki sinyal 180° faz farklıdır. Sinyal, C1 üzerinden R1 üzerine (B noktası) uygulandığında bir faz kaydırma meydana gelir. (Yaklaşık 60°) Faz kayma meydana geldiği için genlikte de bir miktar azalma olur. B noktasındaki sinyal C2 üzerinden R2 'ye uygulanır. Böylece, yaklaşık 120° 'lik bir faz kayma meydana gelir ve genlikte de azalma olur. C noktasındaki sinyal C3 üzerinden R3 'e uygulanırken (D noktası) 180° faz kaydırmaya maruz kalır. 3 adet RC devresinin her biri 60° faz kaydırıp toplam 180° 'lik faz kaydırmaya neden olmuştur. D noktasındaki sinyal, transistörün beyzine uygulanan pozitif geri besleme sinyalidir.

Transistörlü Faz Kaymalı RC Osilatör


http://www.silisyum.net/pic/osilatorler/sekil3.28.gif Şekil 3.28 'de görülen transistörlü R-C osilatör devresinde yükselteç 2N2222A NPN tipi bir transistörle, emiteri ortak bağlantı olarak tertiplenmiştir. Emiteri ortak yükselteç devresinin beyzi ile kollektörü arasında 180° faz farkı vardır. Bu devrenin osilasyon yapabilmesi için çıkış Vo gerilimini 180° faz kaydırılarak girişe yani beyze pozitif geri beslenmesi gereklidir.




Şekil 3.28 'deki devrede;

* C1-R1, C2-R2, C3-RB2: Faz çevirici devre ve frekans tespit edici tertip,

* RB1 ve RB2: Beyz polarmasını sağlayan voltaj bölücü dirençler,

* RE-CE: emiter direnci ve by-pass kondansatörü,

* RC: geri besleme genlik kontrolünü sağlayan kollektör yük direnci,

* 2N2222A: NPN tipi, yükselteç transistörüdür.

C1-R1; birinci R-C devresini, C2-R2; ikinci R-C devresini ve C3-RB2 üçüncü R-C devresini oluşturur. NPN tipi transistörün kollektöründen alınan geri besleme sinyali 180° faz kaydırılarak tekrar transistörün beyzine tatbik edilmektedir. Burada her bir R-C devresi 60° lik faz kaydırmaya neden olmaktadır. Her bir R-C osilatör devresinde 3 adet R-C devresine ihtiyaç yoktur. Toplam faz kaydırmanın 180° ye ulaşması yeterlidir. Emiteri ortak yükselteç devresinin beyzi ile kollektörü arasında 180° faz farkı olduğuna göre kollektör sinyali 180° çevrilerek ve pozitif geri besleme olarak transistörün beyzine geri verilir.

Transistörlü RC osilatör devresinin Vo çıkış sinyalinin frekansı ve genliği geri besleme hattındaki direnç ve kondansatörlerin değerlerine bağlıdır.

Her bir R-C devresinin 60° faz kaydırması istenirse R1 = R2 = RB2 = Rgr olmalıdır. Burada Rgr, emiteri ortak yükseltecin giriş empedansıdır.

Transistörlü R-C devresinin osilatör frekansı;

f = 1 / [2π.R.C.√6 + 4(Rc / R)]

formülüyle bulunur. Burada R ve C değeri, frekans tespit edici tertipteki direnç ve kondansatör değeri, Rc ise kollektör yük direncidir.

Osilasyon genliği ise RC osilatörde kullanılan yükselteç devresinin kazancına bağlıdır.



http://www.silisyum.net/pic/osilator...kil3.29(a).gif



http://www.silisyum.net/pic/osilator...kil3.29(b).gif

Şekil 3.29 - Transistörlü RC Osilatörün EWB Programında UygulanmasıŞekil 3.29 'da gösterilen uygulamada, frekans tespit edici tertipte R = 10 K, C = 10 nF seçilmiştir. Devrenin çıkışından alman sinyalin frekansını formülle bulursak;

f = 1 / [2π.R.C.√6 + 4(Rc / R)] = 1 / [6,28.10.103.10.10-9√6 + 4(5,5.103 / 10.103)]

f = 1 / [ 6,28.10-4 √8,2 ] = 1 / [ 1,8.10-3 ] = 555,55 Hz

olarak bulunur.

Sinyalin bir periyodunun yatayda kapladığı yatay kare sayısı 1,8 karedir. Osilaskobun Time / div konumunun gösterdiği değer 1 ms olduğuna göre sinyalin periyodu,

T = Yatay Kare Sayısı x Time / div

T = 1,8 x 1 ms = 1,8 ms'dir.

Sinyalin frekansı ise;

f = 1 / T = 1 / 1,8.103 = 555,55 Hz 'dir.

Formülle bulunan sinyalin frekansı ile osilaskop üzerindeki sinyalin frekansı birbirine eşit çıkmıştır.



OP-AMP 'lı Faz Kaymalı RC Osilatör
http://www.silisyum.net/pic/osilatorler/sekil3.30.gif


Şekil 3.30 - OP - AMP 'lı Faz Kaymalı R-C OsilatörYaygın olarak kullanılan 741 ve 747 gibi OP-AMP entegreleri osilatör devrelerinde de kullanılır. Şekil 3.30 'da gösterilen OP-AMP devresi inverting yükselteç yapısında olup, 3 adet R-C frekans tespit edici tertipten meydana gelmiştir. Rf direnci OP-AMP 'ın kapalı çevrim kazancını belirleyen geri besleme direnci, R1 direnci ise giriş direncidir. Bu devrede de transistörlü osilatörde olduğu gibi her bir RC 'den oluşan frekans tespit edici tertibi 60° lik faz kaymasına neden olur. Devrede 3 adet R-C 'den oluşan tertip mevcut olduğuna göre 3 x 60° = 180° lik faz kaymasına neden olur. Burada önemli olan toplam faz kaymasının 180° olmasıdır.



OP-AMP 'lı faz kaymalı RC osilatörün çalışma frekansı;

f = 1 / [2π.R.C.√6 formülü ile hasaplanır.

Devrenin osilasyon (salınım) yapabilmesi için devre kazancının 29 'dan büyük olması gerekir. Bundan dolayıdır ki [Rf >= 29 R1] olacak şekilde seçilmelidir.



OP-AMP 'lı Wien Köprü Osilatörü

http://www.silisyum.net/pic/osilatorler/sekil3.31.gif

Şekil 3.31 - OP-AMP 'lı Wien Köprü OsilatörüŞekil 3.31 'de görüldüğü gibi R1 - C1 'den seri, R2 - C2 'den oluşan paralel R-C devreleri Wien köprü osilatörünü oluşturur. Devrede yükselteç olarak OP-AMP kullanılmıştır. Frekansı belirleyen elemanlar ise R3 ve R4 'tür. Çıkış sinyali, belli oranda OP-AMP 'ın faz çevirmeyen (+) girişine R1 - C1 elemanları ile geri beslenmektedir.

OP-AMP 'ın çalışma frekansında R1 - C1 , R2 - C2 'den oluşan köprü devresi maximum geri beslemeyi yapmakta ve bu frekansta faz açısı sıfır olmaktadır.

Devrede R3 - R4 ve OP-AMP 'tan oluşan kısım yükselteci, R1 - C1 ile R2 - C2 'den oluşan kısım Wien köprü devresini yani frekans tespit edici tertibi meydana getirir.

Çıkıştan alınan sinüsiodal sinyalin frekansı veya devrenin çalışma frekansı;

f = 1 / [2π√R1.C1.R2.C2] formülü ile bulunur.

Eğer devrede R1 = R2 = R ve C1 = C2 = C olarak seçilirse formül;

f = 1 / 2πRC olur.

Ayrıca, devrenin istenen frekansta osilasyon yapması ve yeterli çevrim kazancını sağlayabilmesi için ( R3 / R4 ) >= 2 olmalıdır.
aysegul
09-22-2006, 12:07 AM

Kristal Osilatörler
Kristal Yapısı ve Çalışması



Osilatörlerde frekans kararlılığı çok önemlidir. Bir osilatörün sabit frekansta kalabilme özelliğine "Frekans Kararlılığı" denir. RC ve LC osilatörle de frekans kararlılığı iyi değildir. Verici devrelerinde, tahsis edilen frekans yayın yapabilmesi için frekans kararlılığı en iyi olan kristal kontrollü osilatörler kullanılır.
RC veya LC osilatörlerde, L, C ve R değerlerindeki değişkenlikler, transistörlü yükseltecin statik çalışma noktasındaki değişiklikler, sıcaklık ve nem gibi çevresel değişimlere bağlı olarak frekans kararlılığı değişir.
Kristal, piezoelektrik etkiyle çalışan bir elemandır. Piezoelektrik özellik sergileyen doğal kristal elemanlar; quartz (kuvars), Rochelle tuzu ve turmalin 'dir. Genellikle kristal mikrofonlarda Rochelle tuzu kullanılırken osilatörlerde frekans kararlılığı nedeniyle quartz kullanılır. Quartz kristalinin bir yüzüne mekanik baskı uygulandığı zaman karşıt yüzler arasında bir gerilim oluşur. Kristallerde etki iki türlüdür. Mekanik titreşimlerin elektrikli salınımlar;
http://www.silisyum.net/pic/osilatorler/sekil3.55.gif
Şekil 3.55 - Kristalin Sembolü ve Eşdeğer Devresielektriki salınımların mekanik titreşimler üretmesine "Piezoelektrik Etki" adı verilir. Bir kristale, rezonans frekansından veya buna yakın bir frekansta AC bir sinyal uygulandığında, kristal mekanik salınımlar yapmaya başlar. Mekanik titreşimlerin büyüklüğü, uygulanan gerilimin büyüklüğü ile doğru orantılıdır.
Kristalin (xtall) sembolü ve eşdeğer devresi şekil 3.55 'de gösterilmiştir. Eşdeğer devredeki herbir eleman, kristalin mekanik bir özelliğinin karşılığıdır. Cm, kristalin mekanik montajından kaynaklanan kristalin elektrodları arasında varolan kapasitansı gösterir. Eşdeğer devredeki C, kristalin mekanik yumuşaklığına (esneklik, elastisite) eşdeğerdir. Eşdeğer devredeki L, titreşim yapan kristalin kütlesini, R ise kristal yapısının iç sürtünmesinin elektriksel eşdeğerini gösterir. R ile gösterilen kristal kayıpları çok küçük olduğundan, kristallerin Q kalite faktörü 20.000 gibi çok büyük bir değerdedir. LC tank devrelerinde elde edilemeyen yüksek kalite faktörü kristal kontrollü osilatörlerde elde edilir. Bu da kristalli osilatörlerin yüksek kararlılığını ve kesinliğini gösterir.
Bir kristalin, bir seri ve bir de paralel eşdeğer devresi olduğu için iki rezonans frekansı vardır. (Seri, paralel) Seri rezonans devresi R, L ve C 'den, paralel rezonans ise L ve Cm 'den oluşur.
http://www.silisyum.net/pic/osilatorler/sekil3.56.gif
Şekil 3.56 - Kristal Empedansının Frekans ile DeğişmesiKristalin eşdeğer devresi seri ve paralel olmak üzere iki rezonans devresinden oluştuğuna göre şekil 3.56 'da görüldüğü gibi iki rezonans frekansı vardır. Seri rezonans devresinin de empedans R 'ye eşit olduğundan küçüktür, f1 değerindeki frekansta empedans çok küçüktür. L ve Cm, paralel rezonans devresini oluşturduğundan, f2 rezonans frekansı değerinde empedans yüksektir. Bir kristal, devre uygulamasına bağlı olarak, gerek seri gerekse de paralel rezonans frekansında çalışabilir.
Kristal Osilatör Devreleri

http://www.silisyum.net/pic/osilatorler/sekil3.57.gif



Şekil 3.57 - Transistörlü Kristal Kontrolü OsilatörŞekil 3.57 'de kristalin seri rezonans frekansında çalışabilmesi için kristal, geri besleme yoluna seri olarak bağlanmıştır. Burada geri besleme miktarı en büyük düzeydedir. NPN tipi transistör yükselteç devresini oluştururken R1, R2 gerilim bölücü devresini oluşturur. RFC (radyo frekans şok) bobini ise kollektöre DC öngerilimi sağlar ve yüksek frekanslı sinyalleri güç kaynağından izole eder. Bobinin, DC 'de endüktif reaktansı sıfır, yüksek frekanslarda ise çok yüksektir. Cc kuplaj kondansatörü, kollektör ile beyz arasında DC bloklamayı sağlar.


Şekil 3.57 'deki devre "Kristal Kontrollü Pierce Osilatörü" olarak bilinir. Devrenin osilasyon frekansı, kristalin seri rezonans frekansıyla belirlenir.


http://www.silisyum.net/pic/osilatorler/sekil3.58.gif


Şekil 3.58 - Paralel Rezonans Devresi Olarak Çalışan Kristal Kontrollü Osilatör DevresiBir kristalin, paralel rezonansta empedansı maximum olduğu için şekil 3.58 'de görüldüğü gibi devreye paralel bağlanır. Paralel rezonans frekansında kristal 'in empedansı yüksek olduğu için üzerindeki gerilim düşümüde maximum olur.


http://www.silisyum.net/pic/osilatorler/sekil3.59.gif


Şekil 3.59 - OP-AMP 'lı Kristal Kontrollü Osilatör DevresiŞekil 3.59 'da görüldüğü gibi kristal kontrollü osilatör devresinde işlemsel yükselteç (OP-AMP) kullanılabilir. Bu devrede kristal, geri besleme yoluna seri bağlanmıştır. Dolayısıyla kristal, seri rezonans frekansında çalışır. Bu devrenin çıkışından kare dalga alınır. Tam olarak zener geriliminde çıkış genliğini sağlamak için çıkışa bir çift zener bağlanmıştır.

aysegul
09-22-2006, 12:08 AM

LC Osilatörler
http://www.silisyum.net/pic/osilator...kil3.44(a).gif




RC osilatörlerle elde edilemeyen yüksek frekanslı osilasyonlar LC osilatörlerle elde edilir. LC osilatörlerle MHz seviyesinde yüksek frekanslı sinüsoidal sinyaller elde edilir.
Paralel bobin ve kondansatörden oluşan devreye TANK DEVRESİ adı verilir. Şimdi tank devresinden osilasyonun nasıl oluştuğunu açıklayalım.
Bir kondansatörü, DC bir bataryaya kutupları şekilde görüldüğü gibi tam olarak bağlayalım. Şu anda, devrede kondansatör kaynak görevini alır.
Kondansatör, bobin üzerinden deşarj oldukça, bobinden akan akım, bobin etrafında bir manyetik alan oluşmasına neden olur.
Bu olay, şekilde görüldüğü gibi bobinin şişme olayıdır. Çünkü, kondansatör üzerindeki potansiyeli, bobine manyetik alan oluşturarak aktarmıştır. Şu anda kondansatör tam olarak deşarj olmuştur.
Kondansatör tam olarak deşaj olduktan sonra bobin üzerindeki manyetik alan çökmeye başlar. Manyetik alan tamamen çökünceye kadar akım devamlı akacak ve kondansatör ters yönde şarj olacaktır.
Devrede, elemanları birbirine irtibatlamada kullanılan iletken tellerin az da olsa bir direnci olduğundan, şu andaki kondansatörün üzerindeki şarj miktarı, bir öncekine göre daha az miktardadır.
Şimdi kondansatör, tekrar bobin üzerinden deşarj olacaktır. Deşarj akımının yönü bir önceki akım yönüne göre terstir. Bu deşarj akımı bobinin etrafında tekrar bir manyetik alanın oluşmasına yani bobinin şişmesine neden olacaktır.
Bu kez şişen bobin çökmeye başlayacak ve kondansatörün şarj olmasına neden olacaktır. Kondansatör şarj olduğu zaman, plakalarının kutupları, DC bataryaya şarj edildiği andaki kutuplarının aynısıdır.
http://www.silisyum.net/pic/osilator...kil3.44(b).gif





http://www.silisyum.net/pic/osilator...kil3.44(c).gif
Constantin Ofline   Alıntı ile Cevapla
Alt 06-09-2008, 13:07   #2
ยŦยк
 
Constantin - ait Kullanıcı Resmi (Avatar)
 

Şekil 3.44 - Sönümün Tesiri
Kondansatörün, bobin üzerinden şarj ve deşarj olayı L ve C 'nin değeriyle orantılı olarak şekil 3.44(a) 'da görüldüğü gibi devam eder. Tank devresi üzerinden bir sinüsoidal sinyal alınır. Fakat, böyle sönümsüz bir sinüsoidal dalga, devrede direncin bulunmadığı, iletken tellerin direncinin sıfır olduğu ideal bir ortamda elde edilir.
Gerçek uygulamalarda her rezonans devresi bir miktar direnç içerir. Bobinin sarıldığı emaye telin ve devrede elemanları irtibatlamakla kullanılan iletken tellerin dahi bir direnci vardır. Varolan böyle dahili dirençler, tank devresinden elde edilen sünisoidal sinyalin sönmesine, giderek sıfıra gitmesine neden olur. Bu olaya SÖNÜM (Damping) adı verilir.
Osüatörlerde, bu sönümün önüne pozitif geri besleme ile geçilir. Bir tank devresi, osilasyonları meydana getirmek için kullanıldığı zaman, osilatörün ürettiği sinüsoidal sinyalin frekansı, tank devresinin rezonans frekansı olup,
f = 1 / (2π√L.C) formülü ile bulunabilir.
Transistörlü Colpits Osilatör



http://www.silisyum.net/pic/osilatorler/sekil3.45.gif








Şekil 3.45 - Transistörlü Colpits OsilatörColpits osilatörlerde, C1 ve C2 gibi split kondansatörler (ayrılmış, bölünmüş kondansatörler) bulunur. Bu split kondansatörler, Colpits osilatörlerin en belirgin özelliğidir. Bu osilastörün tank devresini L - C1 ve C2 elemanları oluşturur. Burada, C1 ve C2 seri bağlı olduğundan, tank devresinin eşdeğer kapasite değeri,


CT = (C1.C2) / (C1+C2) olur.


Osilatörün çıkışından alınan sinüsoidal sinyalin frekansı,


Şekil 3.45 'teki devrede;


RE - CE, yükselteçin emiter direnci ve by-pass kondansatörü RB1 - RB2, beyz polarmasını sağlayan voltaj bölücü dirençler, C3 beyzi AC sinyalde topraklayan by-pass kondansatörü, L - C1 - C2 frekans tespit edici tertip, NPN tipi transistör, yükselteç transistördür.


C1 ve C2 kondansatörlerinin birleştiği noktadan, transistörlerin emiterine geri besleme yapılmıştır. Transistörün beyzine giriş sinyali uygulanmadığı için emiterden giren sinyali, kollektörden aynen çıkar. Emiter ile kollektör arasında faz farkı yoktur.


Osilatörün çalışma frekansına göre, kondansatör ve bobin osilatörünün frekansını belirler. L veya C 'nin değerleri değiştirilerek osilatörün çalışma frekansı değiştirilebilir.



http://www.silisyum.net/pic/osilator...kil3.46(a).gif



http://www.silisyum.net/pic/osilator...kil3.46(b).gif


Şekil 3.46 - Transistörlü Colpits Osilatörün EWB Programında Uygulanması Şekil 3.46 'da görüldüğü gibi, devre düzgün bir sinüsoidal sinyal üretiyor. Pratikte uygulamalarda genelde C1 değeri C2 'den daha düşük bir değerde seçilir.








Fet 'li Colpits Osilatör





http://www.silisyum.net/pic/osilatorler/sekil3.47.gif








Şekil 3.47 - Fet 'li Colpits OsilatörFET 'in giriş empedans transistörünkinden daha yüksek olduğu için yükleme etkisi en az seviyededir. RFC, radyo frekans şok bobini olup, yüksek frekanslı sinyallere açık devre gibi davranır.


Yüksek frekanslı sinyalleri besleme kaynağından izole eder. RG direnci, FET 'in gate polarmasını sağlayan dirençtir. L, C1 ve C2 den oluşan paralel tank devresi, devrenin çalışma frekansını belirleyen frekans tespit edici tertiptir. Çıkıştan alınan sinyalin frekansı,


f = 1 / 2π√L.CT


CT = (C1.C2) / (C1+C2) , C1 // C2


ile bulunur. Frekans tespit edici tertipteki kandansatör ve bobinin değeri, osilatörün çalışma frekansını belirler.


http://www.silisyum.net/pic/osilator...kil3.48(a).gif



http://www.silisyum.net/pic/osilator...kil3.48(b).gif







Şekil 3.48 - Fet 'li Colpits Osilatörün EWB Programında Uygulanması Şekil 3.48 'de görüldüğü gibi devrenin çıkışından düzgün sinüsoidal sinyal alınır. OP-AMP 'lı Colpits Osilatör



http://www.silisyum.net/pic/osilatorler/sekil3.49.gif




Şekil 3.49 - OP-AMP 'lı Colpits Osilatörİşlemsel Yükselteçle gerçekleştirilen Colpits osilatör, Şekil 3.49 'da gösterilmiştir. Osilatörün çalışma frekansı Colpits Devresinin LC geri besleme devresiyle ayarlanmaktadır. Osilatör frekansı;


f = 1 / 2π√L.CT


CT = (C1.C2) / (C1+C2)


formülüyle hesaplanır.


Hartley Osilatörler




http://www.silisyum.net/pic/osilatorler/sekil3.51.gif



Şekil 3.51 - Seri Hartley OsilatörüHartley osilatörler, seri ve paralel hartley osilatör olmak üzere ikiye ayrılır. Şekil 3.51 'de seri hartley osilatörünün devre şekli gösterilmiştir. Bu devrede, diğer osilatörlerde olduğu gibi bir yükselteç ve L1 - L2 - CT 'den oluşan tank devresi mevcuttur. L1 - L2 ve CT 'den oluşar tank devresi yükselteç +Vcc güç kaynağı arasına seri bağlanmıştır. Bu nedenle bu devreye "Seri Hartley Osilatörü" denir. Devreye dikkat edilirse, doğru akım, topraktan itibaren RE direnci, NPN transistör, L1 ve Rc üzerinden +Vcc tatbik voltajına ulaşır. Tank devresinin bir kısmı +Vcc güç kaynağı ile seri olduğundan devre seri beslemelidir. Tank devresinde L1 + L2 = LT ise çıkış sinyal frekansı;


f = 1 / (2π√CT.LT) formülü ile bulunur.


Geri besleme, L1 ve L2 bobinlerinin orta ucundan, yükseltecin girişine yapılmıştır. Bu devrede;





RB1 - RB2 = Transistörünün beyz polarmasını sağlayan voltaj bölücü dirençler


RE - C1 = Emiter direnci ve by-pass kondansatörü


C1 = Base ile toprak arasında oluşan yüksek frekanslı osilasyonları söndüren, devrenin kararlı çalışmasını sağlayan kondansatör.


L1 - L2 - CT = Frekans tespit edici tertip.


CB = Geri besleme kuplaj kondansatörüdür.


http://www.silisyum.net/pic/osilatorler/sekil3.52.gif


Şekil 3.52 - Paralel Hartley OsilatörüHartley osilatörlerinin diğer tipi paralel hartley osilatörüdür. Seri ve paralel hartley osilatörlerinin en belirgin özelliği orta uçlu bobinin kullanılmasıdır. Seri hartley osilatörlerinde olduğu gibi, şekil 3.52 'deki paralel hartley osilatörlerinde de frekans tespit edici tank devresi ve yükselteçten oluşur. Burada, tank devresi, besleme gerilimine paraleldir. Şekil 3.52 'de DC akım yolu; toprak, RE, NPN tipi transistör, Rc ve +Vcc besleme kaynağıdır. L1 - L2 - ve CT 'den oluşan frekans tespit edici tank devresi, yükselteç üzerinden geçen DC akım yoluna paraleldir. Bundan dolayı, paralel beslemeli hartley osilatörü olarakta bilinir. Devrede Cc ve Cgb kondansatörleri, transistörün kollektör ve beyzini L1 ve L2 bobininden DC bakımdan ayırır. L1 ve L2 bobinleri orta uca sahip tek bir bobindir. Tank devresinin frekansı bobin ve kondansatörünün değerine bağlıdır. Devrenin çalışma frekansı seri hartley osilatörde verilen formülle bulunur.


Paralel hartley osilatör ve yükselteç, emiteri ortak tertiplenmiştir. Bu yükseltecin kazancı emiter akımına dolayısıyla RE emiter direncine bağlıdır. Geri besleme oranı doğrudan osilasyanların genliğini etkiler. Beyz ile toprak arasındaki C1 kondansatörü, beyz ile toprak arasında oluşan yüksek frekanslı osilayonları söndüren ve devrenin kararlı çalışmasını sağlayan bir elemandır.



Kollektörü Akortlu Osilatörler








http://www.silisyum.net/pic/osilatorler/sekil3.53.gif



Şekil 3.53 - Kollektör Akortlu OsilatörKollektör akortlu osilatör devresinde yükselteç transistörünün kollektöründe L ve C 'den oluşan tank devresi vardır. RB1 ve RB2 dirençleri voltaj bölücü dirençler olup CB ve CE kondansatörleri bulundukları noktaları AC bakımından topraklayan by-pass (köprüleme) kondansatörleridir. Osilatörün çalışma frekansını L1 ve C1 elemanları belirler.


Devrenin çalışma frekansı


f = 1 / [2π√L1.C1 formülü ile bulunur.


C1 kondansatörü, değişken kondansatör olursa, osilatörün bir frekans bandı içinde ayarlanmasını sağlar. Böylece osilatör "Değişken Frekanslı Osilatör (VFO)" olarak kullanılabilir. L1 bobibinden, L2 bobinine indükleme meydana gelerek pozitif geri besleme olmuş olur.



Tikler Osilatörler








http://www.silisyum.net/pic/osilatorler/sekil3.54.gif



Şekil 3.54 - Tikler OsilatörTikler osilatör, emiteri ortak bağlı yükselteç ile bu yükseltecin çıkışına bağlanan tank devresinden oluşur. Tank devresindeki transformatörün sekonderinden (Ls) yükselteç girişine C1 vasıtasıyla geri besleme yapılmıştır. Burada geri besleme oranı, transformatörün dönüştürme oranına bağlıdır.


Osilatörün ürettiği sinüsoidal sinyalin frekanslı;


f = 1 / 2π√Lp.C formülüyle bulunur.


Ls bobinine aynı zamanda "Tikler bobini" adı verilir. Tikler geri besleme bobinine de "Armstrong Osilatörü" denir
Constantin Ofline   Alıntı ile Cevapla
Cevapla

Bu konuyu arkadaşlarınızla paylaşın


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık




Türkiye`de Saat: 01:24 .

Powered by vBulletin® Copyright ©2000 - 2008, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.3.2

Sitemiz CSS Standartlarına uygundur. Sitemiz XHTML Standartlarına uygundur

Oracle DBA | Kadife | Oracle Danışmanlık



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580