Beşiktaş Forum  ( 1903 - 2013 ) Taraftarın Sesi


Geri git   Beşiktaş Forum ( 1903 - 2013 ) Taraftarın Sesi > Eğitim Öğretim > Dersler - Ödevler - Tezler - Konular > Fizik

Cevapla
 
LinkBack Seçenekler Stil
Alt 10-10-2006, 10:31   #1
 
OnuR - ait Kullanıcı Resmi (Avatar)
 
Alternatif Akım Devreleri

Belli zaman dilimleri içinde belirli bir hareketin tekrarlanması olayına salınım adı verilir.hepimizin bildiği salıncak bunun en çok rastlanan örneğidir. Masanın kenarına sıkıştırdığımız jiletin titreşmesi veya bir keman telinin titreşimi benzer salınım örnekleridir.
Daha bilimsel bir örnek bir basit sarkacın salınımıdır. Sarkacın salınımları, denge konumundan sağa ve sola doğru belli uzaklıktadır. Eğer sürtünme kuvvetleri olmasaydı bu şekilde salınan sarkaç genliğini hiç bozmadan aynı hareketi devamlı olarak sürdürürdü.Sarkacın denge konumundan sağa veya sola sapması yani yön değiştirmesi,salınım hareketinin en önemli özelliğidir, buna genlik denir. Sarkacın denge konumundan ayrılıp tekrar denge konumuna gelmesi hareketin yarısını oluşturur. Tam bir salınım hareketi, sarkacın denge konumundan ayrılıp bir yöne gittikten sonra, diğer yönde maksimum noktaya ulaşıp tekrar denge konumuna gelmesidir, buna hareketin 'Peryot'u adı verilir. Saniyedeki peryot sayısı ise 'Frekans'
olarak adlandırılır.
Sarkacın bu hareketini dairesel bir hareket kabul edersek,bir peryotluk bir hareket sırasında bir çember etrafı dönülmüş olur ve bu '2pr' kadar bir yol demektir. Bu şekilde ki salınım hareketleri kartezyen koordinat sisteminde 'x = a sin q' fonksiyonu şeklinde gösterililr.
Bir çember etrafında hareket eden bir noktanın bir turda aldığı yol 2pr ve gördüğü açı 2p radyan olur.Birim zamanda görülen açıya açısal hız ( w )adı verilir.t saniyede taranan açıdır. w = 2 p / t olur.
T yani peryot ‘ un 1/f olduğunu biliyoruz; çünkü peryot bir hareketin süresi, frekans ise bir saniyedeki hareket sayısıdır.
f x T = 1 dir.
bir no'lu formülde ki 't' zamanı içinde bir hareket olduğu için,bir hareketin zamanı olan peryot T yi bu eşitliğe koyabiliriz veya T yerine 1/f 'i koyabiliriz . O halde;
w = 2 p f olur.
X = a sin q da q açısının yerine wt yazabiliriz.
X = a sin w t
X = a sin 2 p f t dir.
Elektriğin bu şekilde salınan şekline Alternatif akım adı verilir.
Alternatif akım alternatör denilen cihazlarla elde edilir.
Alternatif akımın ve gerilimin formülü
U = Umax. Sin w. t
U = Umax. Sin 2p f t
I = I max .Sin w.t
I = I max .Sin 2p f t
Şeklinde yazılır.Akım ve gerilim aynı fazdadır. Bir bobin den geçerken akım 90 derece yani p/2 kadar geri kalır.
Bir kondansatör de ise bu sefer gerilim 90 derece yani p / 2 kadar geridedir.
Alternatörler de manyetik alanda indüklenen bir bobin mevcuttur. Farklı kutuplarda bobinin üzerinde oluşan akım yön değiştirir ve değişken bir elektrik akımı ortaya çıkar. Bu şekilde ortaya çıkan elektrik A.C. olarak yazılan 'Alternatif Current'dır.

Bu çeşit elektrik, yön değiştirme özelliği nedeni ile voltajı transformatörlerde yükseltilip düşürülebilir. Bu sayede yüksek voltajların daha az kayıpla nakledilmeleri sebebi ile A.C. uzak
mesafelere daha az kayıpla nakledilebilir. Bugün evlerde ve sanayide kullandığımız hep bu çeşit elektriktir.
Click the image to open in full size.
Faz ve faz farkı

Evlerde 220 volt olarak kullandığımız A.C. etkin değer veya RMS değer dediğimiz değerde bir alternatif akımdır.RMS (root-mean-square) değer A.C. nin, bir resistor üzerinde tükettiği enerjiye eşit enerji tüketen D.C. karşılığıdır.
Teorik olarak etkin değer'e eşit olan RMS değeri, Alternatif akım maximum değer veya tepe değerinin karekökü alınarak bulunur.
Genelde bir A.C. den bahsedilirken hep etkin değerden bahsedilir. Ölçü aletleri de bu değeri ölçerler.
A.C. ın bir de ortalama değeri vardır. Ortalama değer pozitif veya negatif saykıldaki ani değerlerinin toplamının ortalamasıdır.
Maximum değer 1 ise RMS 0.707 Ortalama değer ise 0.636'dır
FAZ : Bir Alternatif akımı veya gerilimi, koordinat sisteminde gösterebileceğimizi ve bir hareketin yani pery**** 2p olduğunu söylemiştik. Buradaki 2p bir haraket süresince taranan açıdır.İkinci bir peryotta bir 2p kadar daha açı taranır.Şimdi bir başka alternatif gerilim veya akımın bu koordinat sisteminde 0 noktasından değil de p/2 kadar ileriden harekete başladığını varsayalım işte iki hareket arasında mevcut mesafe olan p/2 kadar farka faz farkı adı verilir.
Direnç, Kondansatör ve Bobin karşısında Alternatif akımın
davranışı nasıldır ?
Resistansın ( direncin ) Alternatif akıma karşı davranışı D.C. gibidir.Uçlarına A.C. uygulanmış Bir Resistor'ün gösterdiği direnç aynıdır.Ohm yasası kullanılır.
Uçlarına A.C. uygulanmış bir bobinde “Endüktif devre “ durum değişiktir. Bu bobin uclarında bir zıt E.M.K oluşur. Bobinin indüktansı yanında bir de resistansı söz konusudur eğer bu
resistans sıfır değerde ise bu bobin devresi saf indüktif devre olarak adlandırılır. Bobinin gösterdiği dirence ise "İndüktif Reaktans" adı verilir.
{Endüktif Reaktans } X L = wL = 2 p f L dir.
Seri ve paralel bağlamalarda dirençler gibi aynı formüller kullanılır.
Bir bobine tatbik edilen A.C. da akım engelle karşılaşır ve geri kalır. Bu nedenle bobinde akımla gerilim arasında 90 derece faz farkı vardır.
Uclarına bir A.C. tatbik edilmiş kondansatörde, yani kapasitif bir devrede ki dirence "Kapasitif Reaktans" adı verilir.
{ Kapasitif Reaktans } Xc = 1/ w. C dir.
Xc = 1/ 2p f C dir.
Burada değerler Ohm, Farad, Henry'dir. Bir kapasitif devrede gerilime zorluk vardır ve gerilim 90 derece geri kalır.
Paralel kondansatörler de toplam kapasitif reaktans;

1/Xc= 1/ Xc1 +1/Xc2+1/Xc3 +..1/Xcn dir.
Seri bağlı kondansatörlerde ise toplam kapasitif reaktans her kondansatörün kapasitif reaktansları toplamıdır.
Xc = Xc1+Xc2+Xc3+….Xcn dir.
Buraya kadar yalnız başına olan bobin, kondansatör ve direncin alternatif akıma karşı olan davranışını ve gösterdiği direnci gördük, ama elektronik devrelerde çoğu zaman bobin, kondansatör ve dirençler birlikte kullanılırlar.İşte böyle hallerde yani; bobin, kondansatör, direnç gibi elemanların, çeşitli şekilde bağlantılarında A.C. ye karşı gösterilen eşdeğer dirence
'EMPEDANS'’ adı verilir. Z ile gösterilir.Klasik Ohm kanununda ki R direnci yerine Z empedans değeri konarak, Alternatif akım devrelerinde Ohm kanunu kullanılabilir.
V = I . Z dir.
Seri Devrede Empedans
Seri devrelerde,devreden geçen akım sabittir. Gerilim ise her devre elemanı uçlarında farklıdır. Bu nedenle seri devrelere 'Akım devresi' adı verilir ve referans olarak akım alınır. Akım Koordinat sistemi üzerinde X ekseninde gösterilir.

Click the image to open in full size.
Direnç Bobin seri devresi

Click the image to open in full size.

Burada direnç uçlarındaki gerilim VR = İ.R'dir
Bobin ucundaki gerilim;
VL = İ .XL'dir
Burada XL kullanılması nın nedeni, alternatif akım da bobinin direncinin indüktans olarak karşımıza çıkmasıdır ve indüktans formülü kullanılır. Devrenin uçlarındaki gerilim ise,
bunların vektörel toplamıdır.
_____________
V = V VR2 + VL2 olur.
Devrenin uçlarındaki gerilim
V = İ . Z dir. O halde tüm V lerin yerine karşılıklarını yazarsak
_______________
İ.Z = V(İ.R)2 +(İ.XL)2 olur.
_______________
Z = V R2 + XL2 olur.
Yukarıda seri bir direnç, bobin devresinde empedansı gördük,
burada bobinin gerilimi 90 derece ileri fazdadır. Direncin
akımı ve gerilimi arasında bir faz farkı yoktur. Her iki gerilimin
vektörel toplamları bu devrede gerilimin akıma göre j açısı
kadar ileride olduğunu gösterir. Bu açı:
Cos j = R / Z dir.
Direnç Kondansatör seri devresi
Bir direnç ve bir kondansatörden oluşan seri bir devrede durum nasıldır ?

Click the image to open in full size.
Bu devrede kondansatör gerilimi, akıma göre 90 derece geridedir.Burada da önceki devrede olduğu gibi aynı yöntemle
Cos j = R / Z ve
_____________
Z = V R2 + XC2 bulunur.
Direnç Bobin Kondansatör Devresi
Click the image to open in full size.
Direnç üzerinde gerilim akıma göre değişmez demiştik.
Bobinin gerilimi 90 derecede ileride, Kondansatörün gerilimi
ise 90 derece geridedir. Bu devrenin diyagramı şu şekilde gösterilir.
Click the image to open in full size.
Bobin ve kondansatörün Reaktansları görüldüğü gibi birbirlerinezıt yöndedir, bu nedenle bu iki reaktansın farkı ile rezistansın vektörel toplamları bize devrenin empedansını verir.
Burada
XL > XC den büyük ise devre indüktif tir.
XC > XL den büyük ise devre kapasitiftir.
Eğer XL = XC ise rezonans durumu söz konusudur. Yani devre alternatif akımın salınımına en az direnci gösterir.Burada empedans yanlızca rezistansa eşit olur.
Cos j = R / Z dir.
İndüktans ile Kapasitans arasındaki fark D X ise Empedans:
________________
Z= V R2 + D X2 olur.
Paralel Bağlı Devreler
Bobin ve Kondansatörün paralel olduğu devrelerde, referans gerilimdir; çünkü gerilim paralel devre elemanlarının uçlarında aynıdır, değişmez. Bu devrelere gerilim devreleri denir.

Click the image to open in full size.
Direnç Bobin Paralel devresi

Bir direnç ve bir bobin paralel bağlı ise, direnç üzerinde akım ve gerilim arasında faz farkı yoktur.Bobin üzerinde ise akım gerilimegöre 90 derece geridedir.

Devrenin toplam akımı akımların vektörel toplamlarına eşittir.
Direnç Kondansatör Paralel Devresi
Click the image to open in full size.
Bir direnç ile bir kondansatör paralel bağlı olduğunda kondansatörde akım 90 derece ileridedir ve 8 nolu formülde XL yerine XC konur.
Click the image to open in full size.
Direnç Bobin ve kondansatör birlikte ise Empedans

Click the image to open in full size.
Seri devrelerde rezonans halinde XL = XC olduğu için bu devrelerde empedans minimumdur,empedans minimum olduğunda akım maksimum olur
Paralel rezonans devrelerinde ise rezonans halinde durum tam tersidir ve akım minimum, empedans maximumdur.
Rezonans halinde, maksimum akımın 0.7'si kadar akım değerlerine denk gelen D f aralığına da 'Bant genişliği' adı verilir.
Bant genişliğinin az olması devrenin 'Q' kalite faktörünün yüksekliği anlamına gelir.
Q = XL / R
__________________




Besiktas JK






.
OnuR Ofline   Alıntı ile Cevapla
Cevapla

Bu konuyu arkadaşlarınızla paylaşın


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık




Türkiye`de Saat: 14:30 .

Powered by vBulletin® Copyright ©2000 - 2008, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.3.2

Sitemiz CSS Standartlarına uygundur. Sitemiz XHTML Standartlarına uygundur

Oracle DBA | Kadife | Oracle Danışmanlık



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580