![]() | |
Ana Sayfa | Kayıt ol | Yardım | Ortak Alan | Ajanda | Bugünkü Mesajlar | XML | RSS | |
![]() | #1 | ||
![]() Üyelik tarihi: Mar 2006
Mesajlar: 17.217
Tecrübe Puanı: 38 ![]() ![]() |
TANIM a ¹ 0 ve a, b, c Î IR olmak üzere, f : IR ® IR tanımlanan f(x) = ax2 + bx + c biçimindeki fonksiyonlara ikinci dereceden bir değişkenli fonksiyonlar denir. ![]() Parabol, düzgün tel parça-sının uçlarından tutularak bükülmesiyle oluşan, yandaki gibi kolları yukarıya doğru ya da aşağıya doğru olan bir eğridir. B. PARABOLÜN TEPE NOKTASI 1) f(x) = ax2 + bx + c fonksiyonunun tepe noktası T(r, k) olmak üzere, Ü Parabol ![]() ![]() y = a(x – r)2 + k fonksiyonunun grafiğinin tepe noktası T(r, k) dır. C. GRAFİĞİN EKSENLERİ KESTİĞİ NOKTALARParabolün Ox eksenini kestiği noktalar A ve B, Oy eksenini kestiği nokta C olsun. ax2 + bx + c = 0 ın kökleri x1 ve x2 ise A(x1, 0), B(x2, 0), C(0, c) dir. Ü ax2 + bx + c = 0 denkleminde
1) 2) a < 0 ise, parabolün kolları aşağı doğru olup, f(x) in en büyük değeri tepe noktası-nın ordinatı olan k dır.![]() ![]() ![]() 1) Fonksiyonun tepe noktası bulunur. 2) Fonksiyonun eksenleri kestiği noktalar bulunur. 3) a nın işaretine bakılarak parabolün kollarının yönü belirlenir.
__________________ Besiktas JK . | ||
![]() | ![]() |
|
![]() | #2 | ||
![]() Üyelik tarihi: Mar 2006
Mesajlar: 17.217
Tecrübe Puanı: 38 ![]() ![]() | E. GRAFİĞİ VERİLEN PARABOLÜN DENKLEMİNİN YAZILMASI 1. Parabolün Ox Eksenini Kestiği Noktalar Biliniyorsa y = f(x) = a(x – x1) (x – x2) ... (1) dir. Burada a değerini bulmak için, parabol üzerindeki herhangi bir noktanın değerleri (1) de yazılır. 2. Parabolün Tepe Noktası Biliniyorsa y = f(x) = a(x – r)2 + k ... (1) dir. Burada a değerini bulmak için, parabol üzerindeki herhangi bir noktanın değerleri (1) de yazılır. 3. Parabolün Geçtiği Üç Nokta Biliniyorsa y1 = ax12 + bx1 + c ... (1) y2 = ax22 + bx2 + c ... (2) y3 = ax32 + bx3 + c ... (3) Bu üç denklemi ortak çözerek a, b, c yi buluruz. F. PARABOL İLE DOĞRUNUN DÜZLEMDEKİ DURUMU y = f(x) = ax2 + bx + c parabolü ile y = g(x) = mx + n doğrusunu ortak çözelim. (*) denkleminin kökleri (varsa) doğru ile parabolün kesiştiği noktaların apsisleridir.ax2 + (b – m)x + c – n = 0 ... (*)ax2 + bx + c = mx + nf(x) = g(x) Buna göre, (*) denkleminde;
__________________ Besiktas JK . | ||
![]() | ![]() |
![]() |
Bu konuyu arkadaşlarınızla paylaşın |
![]() LinkBack to this Thread: http://besiktasforum.net/forum/matematik-geometri/10898-parabol/ | ||||
Mesaj Yazan | For | Type | Tarih | |
Untitled document | This thread | Refback | 21-03-2008 23:00 |
Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir) | |
| |
![]() | ![]() |