Beşiktaş Forum  ( 1903 - 2013 ) Taraftarın Sesi


Geri git   Beşiktaş Forum ( 1903 - 2013 ) Taraftarın Sesi > Eğitim Öğretim > Dersler - Ödevler - Tezler - Konular > Fizik

Cevapla
 
LinkBack Seçenekler Stil
Alt 18-01-2007, 14:47   #1
imparator
Guest
 
imparator - ait Kullanıcı Resmi (Avatar)
 
FOTOVOLTAİK PİLLER

GÜNEŞ PİLLERİ
( FOTOVOLTAİK PİLLER )
Güneş pilleri (fotovoltaik piller), yüzeylerine gelen güneş ışığını doğrudan elektrik enerjisine dönüştüren yarıiletken maddelerdir. Yüzeyleri kare, dikdörtgen, daire şeklinde biçimlendirilen güneş pillerinin alanları genellikle 100 cm² civarında, kalınlıkları ise 0,2-0,4 mm arasındadır.
Güneş pilleri fotovoltaik ilkeye dayalı olarak çalışırlar, yani üzerlerine ışık düştüğü zaman uçlarında elektrik gerilimi oluşur. Pilin verdiği elektrik enerjisinin kaynağı, yüzeyine gelen güneş enerjisidir.
Güneş enerjisi, güneş pilinin yapısına bağlı olarak % 5 ile % 20 arasında bir verimle elektrik enerjisine çevrilebilir.
Güç çıkışını artırmak amacıyla çok sayıda güneş pili birbirine paralel ya da seri bağlanarak bir yüzey üzerine monte edilir, bu yapıya güneş pili modülü ya da fotovoltaik modül adı verilir. Güç talebine bağlı olarak modüller birbirlerine seri ya da paralel bağlanarak bir kaç Watt'tan megaWatt'lara kadar sistem oluşturulur.
GÜNEŞ PİLLERİNİN YAPISI
VE ÇALIŞMASI
Günümüz elektronik ürünlerinde kullanılan transistörler, doğrultucu diyotlar gibi güneş pilleri de, yarı-iletken maddelerden yapılırlar. Yarı-iletken özellik gösteren birçok madde arasında güneş pili yapmak için en elverişli olanlar, silisyum, galyum arsenit, kadmiyum tellür gibi maddelerdir.
Yarı-iletken maddelerin güneş pili olarak kullanılabilmeleri için n ya da p tipi katkılanmaları gereklidir. Katkılama, saf yarıiletken eriyik içerisine istenilen katkı maddelerinin kontrollü olarak eklenmesiyle yapılır. Elde edilen yarı-iletkenin n ya da p tipi olması katkı maddesine bağlıdır. En yaygın güneş pili maddesi olarak kullanılan silisyumdan n tipi silisyum elde etmek için silisyum eriyiğine periyodik cetvelin 5. grubundan bir element, örneğin fosfor eklenir. Silisyum'un dış yörüngesinde 4, fosforun dış yörüngesinde 5 elektron olduğu için, fosforun fazla olan tek elektronu kristal yapıya bir elektron verir. Bu nedenle V. grup elementlerine "verici" ya da "n tipi" katkı maddesi denir.
P tipi silisyum elde etmek için ise, eriyiğe 3. gruptan bir element (alüminyum, indiyum, bor gibi) eklenir. Bu elementlerin son yörüngesinde 3 elektron olduğu için kristalde bir elektron eksikliği oluşur, bu elektron yokluğuna hol ya da boşluk denir ve pozitif yük taşıdığı varsayılır. Bu tür maddelere de "p tipi" ya da "alıcı" katkı maddeleri denir.
P ya da n tipi ana malzemenin içerisine gerekli katkı maddelerinin katılması ile yarıiletken eklemler oluşturulur. N tipi yarıiletkende elektronlar, p tipi yarıiletkende holler çoğunluk taşıyıcısıdır. P ve n tipi yarıiletkenler biraraya gelmeden önce, her iki madde de elektriksel bakımdan nötrdür. Yani p tipinde negatif enerji seviyeleri ile hol sayıları eşit, n tipinde pozitif enerji seviyeleri ile elektron sayıları eşittir. PN eklem oluştuğunda, n tipindeki çoğunluk taşıyıcısı olan elektronlar, p tipine doğru akım oluştururlar. Bu olay her iki tarafta da yük dengesi oluşana kadar devam eder. PN tipi maddenin ara yüzeyinde, yani eklem bölgesinde, P bölgesi tarafında negatif, N bölgesi tarafında pozitif yük birikir. Bu eklem bölgesine "geçiş bölgesi" ya da "yükten arındırılmış bölge" denir. Bu bölgede oluşan elektrik alan "yapısal elektrik alan" olarak adlandırılır. Yarıiletken eklemin güneş pili olarak çalışması için eklem bölgesinde fotovoltaik dönüşümün sağlanması gerekir. Bu dönüşüm iki aşamada olur, ilk olarak, eklem bölgesine ışık düşürülerek elektron-hol çiftleri oluşturulur, ikinci olarak ise, bunlar bölgedeki elektrik alan yardımıyla birbirlerinden ayrılır.


Yarıiletkenler, bir yasak enerji aralığı tarafından ayrılan iki enerji bandından oluşur. Bu bandlar valans bandı ve iletkenlik bandı adını alırlar. Bu yasak enerji aralığına eşit veya daha büyük enerjili bir foton, yarıiletken tarafından soğurulduğu zaman, enerjisini valans banddaki bir elektrona vererek, elektronun iletkenlik bandına çıkmasını sağlar. Böylece, elektron-hol çifti oluşur. Bu olay, pn eklem güneş pilinin ara yüzeyinde meydana gelmiş ise elektron-hol çiftleri buradaki elektrik alan tarafından birbirlerinden ayrılır. Bu şekilde güneş pili, elektronları n bölgesine, holleri de p bölgesine iten bir pompa gibi çalışır. Birbirlerinden ayrılan elektron-hol çiftleri, güneş pilinin uçlarında yararlı bir güç çıkışı oluştururlar. Bu süreç yeniden bir fotonun pil yüzeyine çarpmasıyla aynı şekilde devam eder. Yarıiletkenin iç kısımlarında da, gelen fotonlar tarafından elektron-hol çiftleri oluşturulmaktadır. Fakat gerekli elektrik alan olmadığı için tekrar birleşerek kaybolmaktadırlar.
TÜRKİYE'DE GÜNEŞ ENERJİSİ
GÜNEŞ ENERJİSİ POTANSİYELİ

Ülkemiz, coğrafi konumu nedeniyle sahip olduğu güneş enerjisi potansiyeli açısından birçok ülkeye göre şanslı durumdadır. Devlet Meteoroloji İşleri Genel Müdürlüğünde (DMİ) mevcut bulunan 1966-1982 yıllarında ölçülen güneşlenme süresi ve ışınım şiddeti verilerinden yararlanarak EİE tarafından yapılan çalışmaya göre Türkiye'nin ortalama yıllık toplam güneşlenme süresi 2640 saat (günlük toplam 7,2 saat), ortalama toplam ışınım şiddeti 1311 kWh/m²-yıl (günlük toplam 3,6 kWh/m²) olduğu tespit edilmiştir. Aylara göre Türkiye güneş enerji potansiyeli ve güneşlenme süresi değerleri ise Tablo-1'de verilmiştir.

Tablo-1 Türkiye'nin Aylık Ortalama Güneş Enerjisi Potansiyeli
Kaynak: EİE Genel Müdürlüğü

AYLAR
AYLIK TOPLAM GÜNEŞ ENERJİSİ
(Kcal/cm2-ay) (kWh/m2-ay)
GÜNEŞLENME SÜRESİ
(Saat/ay)
OCAK
4,45
51,75
103,0
ŞUBAT
5,44
63,27
115,0
MART
8,31
96,65
165,0
NİSAN
10,51
122,23
197,0
MAYIS
13,23
153,86
273,0
HAZİRAN
14,51
168,75
325,0
TEMMUZ
15,08
175,38
365,0
AĞUSTOS
13,62
158,40
343,0
EYLÜL
10,60
123,28
280,0
EKİM
7,73
89,90
214,0
KASIM
5,23
60,82
157,0
ARALIK
4,03
46,87
103,0
TOPLAM
112,74
1311
2640
ORTALAMA
308,0 cal/cm2-gün
3,6 kWh/m2-gün
7,2 saat/gün

Türkiye'nin en fazla güneş enerjisi alan bölgesi Güney Doğu Anadolu Bölgesi olup, bunu Akdeniz Bölgesi izlemektedir. Güneş enerjisi potansiyeli ve güneşlenme süresi değerlerinin bölgelere göre dağılımı da Tablo-2' de verilmiştir.
Ancak, bu değerlerin, Türkiye’nin gerçek potansiyelinden daha az olduğu, daha sonra yapılan çalışmalar ile anlaşılmıştır. 1992 yılından bu yana EİE ve DMİ, güneş enerjisi değerlerinin daha sağlıklı olarak ölçülmesi amacıyla enerji amaçlı güneş enerjisi ölçümleri almaktadırlar. Devam etmekte olan ölçüm çalışmalarının sonucunda, Türkiye güneş enerjisi potansiyelinin eski değerlerden %20-25 daha fazla çıkması beklenmektedir.
EİE’nin ölçü yaptığı 8 istasyondan alınan yeni ölçümler ve DMİ verileri yardımı ile 57 ile ait güneş enerjisi ve güneşlenme süreleri değerleri hesaplanarak bir kitapçık halinde basılmıştır.
Tablo-2 Türkiye'nin Yıllık Toplam Güneş Enerjisi Potansiyelinin Bölgelere Göre Dağılımı
Kaynak: EİE Genel Müdürlüğü

BÖLGE
TOPLAM GÜNEŞ ENERJİSİ
(kWh/m2-yıl)
GÜNEŞLENME SÜRESİ (Saat/yıl)
G.DOĞU ANADOLU
1460
2993
AKDENİZ
1390
2956
DOĞU ANADOLU
1365
2664
İÇ ANADOLU
1314
2628
EGE
1304
2738
MARMARA
1168
2409
KARADENİZ
1120
1971

GÜNEŞ ENERJİSİ KULLANIMI

Güneş Kollektörleri
Türkiye’de güneş enerjisinin en yaygın kullanımı sıcak su ısıtma sistemleridir.Halen ülkemizde kurulu olan güneş kollektörü miktarı 2001 yılı için 7,5 milyon m2 civarındadır. Çoğu Akdeniz ve Ege Bölgelerinde kullanılmakta olan bu sistemlerden yılda yaklaşık 290 bin TEP ısı enerjisi üretilmektedir. Sektörde 100'den fazla üretici firmanın bulunduğu ve 2000 kişinin istihdam edildiği tahmin edilmektedir. Yıllık üretim hacmi 750 bin m² olup bu üretimin bir miktarı da ihraç edilmektedir. Bu haliyle ülkemiz dünyada kayda değer bir güneş kollektörü üreticisi ve kullanıcısı durumundadır.
Güneş kollektörlerinin ürettiği ısıl enerjinin birincil enerji tüketimimize katkısı yıllara göre aşağıda yer almaktadır.
Yıl
Güneş Enerjisi Üretimi (bin TEP )
1998
210
1999
236
2000
262
2001
290

Güneş Pilleri – Fotovoltaik Sistemler
Güneş pilleri, halen ancak elektrik şebekesinin olmadığı, yerleşim yerlerinden uzak yerlerde ekonomik yönden uygun olarak kullanılabilmektedir. Bu nedenle ve istenen güçte kurulabilmeleri nedeniyle genellikle sinyalizasyon, kırsal elektrik ihtiyacının karşılanması vb. gibi uygulamalarda kullanılmaktadır. Ülkemizde halen telekom istasyonları, Orman Genel Müdürlüğü yangın gözetleme istasyonları, deniz fenerleri ve otoyol aydınlatmasında kullanılan güneş pili kurulu gücü 300kW civarındadır.
DİĞER KURUMLARIN ÇALIŞMALARI

Güneş enerjisi araştırma ve geliştirme konularında EİE'nin yanında Tübitak Marmara Araştırma Merkezi ve üniversiteler (Ege Üniversitesi Güneş Enerjisi Araştırma Enstitüsü, Muğla Üniversitesi, ODTÜ, Kocaeli Üniversitesi, Fırat Üniversitesi) çalışmalar yapmaktadır.
Güneş enerjisi verilerinin ölçülmesi konusunda Devlet Meteoroloji İşleri Genel Müdürlüğü faaliyet göstermektedir. EİE de 1991 yılından bu yana kendi güneş enerjisi gözlem istasyonları kurmaktadır.
Güneş enerjisi ile ilgili standartlar hazırlanması konusunda Türk Standartları Enstitüsü;
- TS 3680 -Güneş Enerjisi Toplayıcıları-Düz
- TS 3817 - Güneş Enerjisi - Su Isıtma Sistemlerinin Yapım, Tesis ve İşletme Kuralları
konulu standartları hazırlamıştır. EİE bu standartların hazırlanmasında görev aldığı gibi, ısıl performans testlerini de gerçekleştirmektedir.
GÜNEŞ KOLLEKTÖRLÜ SICAK SU SİSTEMLERİ
Güneş kollektörlü sıcak su sistemleri, güneş enerjisini toplayan düzlemsel kollektörler, ısınan suyun toplandığı depo ve bu iki kısım arasında bağlantıyı sağlayan yalıtımlı
borular, pompa ve kontrol edici gibi sistemi tamamlayan elemanlardan oluşmaktadır.

Güneş Kollektörlü Sıcak Su Sistemi
Güneş kollektörlü sistemler tabii dolaşımlı ve pompalı olmak üzere ikiye ayrılırlar. Her iki sistem de ayrıca açık ve kapalı sistem olarak dizayn edilirler.
Tabii Dolaşımlı Sistemler: Tabii dolaşımlı sistemler ısı transfer akışkanının kendiliğinden dolaştığı sistemlerdir. Kollektörlerde ısınan suyun yoğunluğunun azalması ve yükselmesi özelliğine dayanmaktadır. Bu tür sistemlerde depo kollektörün üst seviyesinden en az 30 cm yukarıda olması gerekmektedir. Deponun alt seviyesinden alınan soğuk (ağır) su kollektörlerde ısınarak hafifler ve deponun üst seviyesine yükselir. Gün boyu devam eden bu olay sonunda depodaki su ısınmış olur. Tabii dolaşımlı sistemler daha çok küçük miktarda su ihtiyaçları için uygulanır. Deponun yukarıda bulunması zorunluluğu nedeniyle büyük sistemlerde uygulanamazlar. Pompa ve otomatik kontrol devresi gerektirmediği için pompalı sistemlere göre biraz daha ucuzdur.
Pompalı Sistemler: Isı transfer akışkanının sistemde pompa ile dolaştırıldığı sistemlerdir. Deposunun yukarıda olma zorunluluğu yoktur. Büyük sistemlerde su hatlarındaki direncin artması sonucu tabii dolaşımın olmaması ve büyük bir deponun yukarıda tutulmasının zorluğu nedeniyle pompa kullanma zorunluluğu doğmuştur.
Pompalı sistemler otomatik kontrol devresi yardımı ile çalışırlar. Depo tabanına ve kollektör çıkışına yerleştirilen diferansiyel termostatın sensörleri; kollektörlerdeki suyun depodaki sudan 10oC daha sıcak olması durumunda pompayı çalıştırarak sıcak suyu depoya alır, bu fark 3 oC olduğunda ise pompayı durdurur. Pompa ve otomatik kontrol devresinin zaman zaman arızalanması nedeniyle işletilmesi tabii dolaşımlı sistemlere göre daha zordur.
Açık Sistemler: Açık sistemler kullanım suyu ile kollektörlerde dolaşan suyun aynı olduğu sistemlerdir. Kapalı sistemlere göre verimleri yüksek ve maliyeti ucuzdur. Suyu kireçsiz ve donma problemlerinin olmadığı bölgelerde kullanılırlar.
Kapalı Sistemler: Kullanım suyu ile ısıtma suyunun farklı olduğu sistemlerdir. Kollektörlerde ısınan su bir eşanjör vasıtasıyla ısısını kullanım suyuna aktarır. Donma, kireçlenme ve korozyona karşı çözüm olarak kullanılırlar. Maliyeti açık sistemlere göre daha yüksek verimleri ise eşanjör nedeniyle daha düşüktür.
DÜZLEMSEL GÜNEŞ KOLLEKTÖRLERİ

Düzlemsel güneş kollektörleri, güneş enerjisinin toplandığı ve herhangi bir akışkana aktarıldığı çeşitli tür ve biçimlerdeki aygıtlardır. Düzlemsel güneş kollektörleri, üstten alta doğru, camdan yapılan üst örtü, cam ile absorban plaka arasında yeterince boşluk, kollektörün en önemli parçası olan absorban plaka, arka ve yan yalıtım ve yukardaki bölümleri içine alan bir kasadan oluşmuştur (Şekil-2).
Düzlemsel Güneş Kollektörü
Üst örtü: Kollektörlerin üstten olan ısı kayıplarını en aza indirgeyen ve güneş ışınlarının geçişini engellemeyen bir maddeden olmalıdır. Cam, güneş ışınlarını geçirmesi ve ayrıca absorban plakadan yayınlanan uzun dalga boylu ışınları geri yansıtması nedeni ile örtü maddesi olarak son derece uygun bir maddedir. Bilinen pencere camının geçirme katsayısı 0.88’dir. Son zamanlarda özel olarak üretilen düşük demir oksitli camlarda bu değer 0.95 seviyesine ulaşmıştır. Bu tür cam kullanılması verimi % 5 mertebesinde arttırır.
Absorban Plaka: Absorban plaka kollektörün en önemli bölümüdür. Güneş ışınları, absorban plaka tarafından yutularak ısıya dönüştürülür ve sistemde dolaşan sıvıya aktarılır.
Absorban plaka tabanda ve üstte birer manifold ile bunların arasına yerleştirilmiş akışkan boruları ve yutucu plakadan oluşur. Yutucu plaka ışınları yutması için koyu bir renge genellikle siyaha boyanmıştır. Kullanılan boyanın yutma katsayısının (absorptivite) yüksek uzun dalga boylu radyasyonu yayma katsayısının (emissivite) düşük olması gerekmektedir. Bu nedenle de bu özelliklere sahip seçici yüzeyler kullanılmaktadır. Mat siyah boyanın yutuculuğu 0. 95 gibi yüksek bir rakam iken yayıcılığı da 0.92 gibi istenmeyen bir değerdedir. Yapılan seçici yüzeylerde yayma katsayısı 0.1’in altına inmiştir. Seçici yüzey kullanılması halinde kollektör verimi ortalama % 5 artar.
Absorban plaka, borular ile sıkı temas halinde olmalıdır. Alüminyumda olduğu gibi, akışkan borularının kanatlarla bir bütün teşkil etmesi en iyi durumdur. Bakır ve sacda bu mümkün olmadığı için akışkan boruları ile plakanın birbirine temas problemi ortaya çıkmaktadır. Bu problem ya tamamen yada belli aralıklarla lehim veya kaynak yapmakla çözülebilir.
Isı Yalıtım: Kollektörün arkadan olan ısı kayıplarını minumuma indirmek için absorban plaka ile kasa arası uygun bir yalıtım maddesi ile yalıtılmalıdır. Absorban plaka sıcaklığı, kollektörün boş kalması durumunda 150 °C’a kadar ısınması nedeniyle kullanılacak olan yalıtım malzemesinin sıcak yalıtım malzemesi olması gerekmektedir. Isı iletim katsayıları düşük ve soğuk yalıtım malzemesi olarak bilinen poliüretan kökenli yalıtım malzemeleri tek başına kullanılmamalıdır. Bu tür yalıtım malzemeleri, absorban plakaya bakan tarafı sıcak yalıtım malzemesi ile takviye edilerek kullanılmalıdır.
Kollektör Kasası: Kasa, yalıtkanın ıslanmasını önleyecek biçimde yapılmalıdır. Özellikle kollektör giriş ve çıkışlarında kasanın tam sızdırmazlığı sağlanmalıdır. Kasanın her yanı 100 kg/m2 (981 Pa=N/m2) basınca dayanıklı olmalıdır (TSE-3680).
Sıvılı kollektörlerde sızdırmazlığın yüzde yüz sağlanamadığı durumlarda camda yoğunlaşan su buharını dışarıya atmak amacıyla kasanın iki yan kenarına tam karşılıklı ikişer adet 2-3 mm çapında delik açılmalıdır.
Kollektör Enerji Dengesi
Kollektör üzerine gelen güneş ışınımının bir kısmı saydam örtüde yansır, bir kısmı yine saydam örtüde yutulur ve geri kalan kısmı absorban plakaya (yutucu yüzeye) ulaşır. Absorban plakaya gelen enerjinin, bir kısmı ısı taşıyıcı akışkana geçerken bir kısmı absorban plakada depolanır, geri kalan kısmı ışınım, taşınım, ve iletimle çevreye gider. Işınım taşınım ve iletimle olan ısı kayıplarının toplamı Qk, depolanan enerji Qd, akışkana geçen enerji Qf, olmak üzere, düzlemsel kollektörler için enerji dengesi:
I.A.(t.a)=Qf+Qk+Qd
Şeklinde yazılabilir. Burada (t.a) kollektör yutma geçirme çarpımı, I kollektör üzerine gelen güneş enerjisi ve A faydalı yüzey alanı olmak üzere I.A.(t.a) çarpımı absorban plaka üzerine gelen güneş enerjisini verir.
Kollektör Verimi:
Kollektörlerde ısı taşıyıcı akışkanda toplanan güneş enerjisinin, kollektöre gelen güneş enerjisine oranına kollektör verimi denir. Kollektör giriş suyu sıcaklığı arttıkca verim düşme eğiliminde olacağından genel bir verim yerine anlık verimden yani verim eğrisinden bahsetmek daha doğru olacaktır. Kollektör verimi ısı taşıyıcı akışkanın giriş, çıkış sıcaklıkları ve debi değerlerinin sağlıklı ölçülebildiği durumlarda ve en önemlisi çevre sıcaklığının sabit olduğu durumlarda
h = (m*Cp*( Tçık-Tgir)) / (A*I)
bağıntısıyla hesaplanabilir. Fakat verim eğrisi oluşturulurken çevre sıcaklığı da değişeceğinden verim bağıntısında Tç çevre sıcaklığı da değişken parametre olarak bulunmalıdır. Buna bağlı olarak verim,
Qk=-k*A*dt/dx genel ısı transfer denklemi kullanılarak ve Qg kollektöre gelen toplam güneş enerjisi olmak kaydı ile
h=Qf/Qg=(Qg*(t*a)-Qk)/Qg=(t*a)-(Qk/Qg)= (t*a)-(K*A*(Tort-Tçev))/(I*A)
h=(t*a)-K(Tort-Tçev)/I
formülüyle hesaplanması daha mantıklıdır. Burada kullanılan K kollektör için ısı kayıp katsayısıdır.
‘K’ Kollektör Isı Kayıp Katsayısı

Düzlemsel kollektörlerde çevreye olan ısı kaybı kollektörlerin üst alt ve yan yüzeylerinden olur.
K= Küst + Kalt + Kyan
Şeklinde yazılabilir. Kollektör alt ve yan yüzeylerinden olan ısı kayıpları yalıtım malzemesinin kalınlığına ve ısı transfer katsayısına bağlıdır. Değeri ‘Küst’ parametresine göre oldukça küçüktür. Çünkü kollektör üst yüzeyi saydam örtüden dolayı izolasyon yapılamamaktadır ve toplam ısı kayıplarının % 70’ i bu yüzeyden olmaktadır. ‘k’ yalıtım malzemesi ısı transfer katsayısı, L yalıtım malzemesi kalınlığı h konveksiyon ısı kayıp katsayısı olmak üzere
Kalt=1/((1/h)+(L/k)) bağıntısıyla hesaplanabilir.
Üstten olan ısı kayıp katsayısının iteratif metotlarla hesaplanması uzun işlemleri gerektirmektedir. Pratikte basit bağıntılar tercih edilir. Agarwal ve Larson (1981), Küst değerinin

Bağıntısı ile maksimum ±0,25 W/m2°K hata ile bulunabileceğini belirtmektedir.Burada,
htd=5,7+3,8V
f=(1-0,04*htd+0,0005*h2td)(1+0,091N)
C=250*(1-0,0044*(s-90))
Olup, V (m/s) rüzgar hızı, s(drc) kollektör eğimi, N saydam örtü sayısı, eL yutucu yüzeyin ışınım neşretme oranı,eS saydam örtünün ışınım neşretme oranı TY ve Tçev sırası ile yutucu yüzey ve çevre sıcaklıklarıdır. Saydam örtü sayısının birden fazla olduğu durumlarda yukarıdaki denklemin kullanılabilmesi için saydam örtülerin aynı tip olması gerekir. Fiziksel özellikleri farklı saydam örtü kullanılması durumunda iteratif metotlar kullanılmalıdır.
Teorik olarak hesaplanması çok zor olan K kollektör kayıp katsayısı, kollektör test çalışması sonucunda elde edilen verim eğrisinden kolayca tespit edilebilmektedir. Kollektörün verimi, giriş suyu sıcaklığı, çevre sıcaklığı, debi ve radyasyon değerlerine bağlı olarak değişmektedir. Toplam ısı kayıp katsayısı da bu parametrelere bağlı olarak değişim gösterir. Pratik olarak verim eğrisinin eğimi toplam ısı kayıp katsayısı değerini verir. Toplam ısı kayıp katsayısı ve bu eğrinin verim eksenini kestiği noktadaki maksimum verime (ısı yalıtım katsayısının 0 kabul edildiği yani hiç ısı kaybının olmadığı durum) göre kollektörlerin iyi veya kötü olduğuna karar verilmektedir.
Şekil-6’da toplam ısı kayıp katsayısı (4,16 W/°Cm2) düşük ve yutma geçirme katsayısı (0,82) büyük olan iyi kabul edilebilecek bir verim eğrisi görülmektedir.
PROJELENDİRME

Güneş kollektörlü sıcak su sistemlerini projelendirmede farklı yöntemler izlenebilir. Projelendirmede ihtiyacın güneşten karşılanma oranı %100 olmayacağı gibi bu oran % 10’un altında da olmamalıdır. Genel olarak Mayıs ayında ihtiyacın %70’inin karşılanacağını düşünerek projelendirmekte yarar vardır. Projelendirmede kişi başına tüketim, konutlarda 50, otel, motel gibi turistik tesislerde 75 ve hastanelerde 100 litre/gün olarak alınır.
Projelendirme konusunda en geçerli yöntem F-Chart yöntemidir. Buna göre kollektöre ait parametreler aşağıdaki gibi olmalıdır.
0.6<τα<0.9
2.1<UL<8.3
5<F’RA<120 m2
X= FRUL(F’R/FR)(Tref-Ta)t(Ac/L)
Y=FR(τα)n (F’R/FR)(( τα)/( τα)n)HtN(Ac/L)
f=1.029Y-0.065X-0.245Y2+0.0018X20.0215Y3
Burada:
Ac : Kollektör alanı m2
F’R/FR : Kollektör devresi eşanjör verimi (0,90-0,95)
FRUL : kollektör ısı kayıp katsayısı (W/m2°C)
t : Bir aylık toplam süre (saniye)
Ta : çevre sıcaklığı (°C)
Tref : refarans sıcaklığı (100 °C)
L : Aylık toplam ısı yükü (j)
Ht : Kollektör birim yüzeyine gelen aylık ortalam güneş enerjisi (j/m2)
N : Aydaki gün sayısı
(τα)/( τα)n) :Aylık ortalama yutma geçirme çarpımı (0,9-0,95)
f : Faydalanma oranı
Yukarıda verilen f faydalanma oranı mayıs ayında % 70 olacak şekilde Ac kollektör alanı hesaplanır.
Kollektör Verim Eğrisi
  Alıntı ile Cevapla
Cevapla

Bu konuyu arkadaşlarınızla paylaşın


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık




Türkiye`de Saat: 10:54 .

Powered by vBulletin® Copyright ©2000 - 2008, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.3.2

Sitemiz CSS Standartlarına uygundur. Sitemiz XHTML Standartlarına uygundur

Oracle DBA | Kadife | Oracle Danışmanlık



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580