Beşiktaş Forum  ( 1903 - 2013 ) Taraftarın Sesi


Geri git   Beşiktaş Forum ( 1903 - 2013 ) Taraftarın Sesi > Eğitim Öğretim > Dersler - Ödevler - Tezler - Konular > Elektronik & Bilgisayar

Cevapla
 
LinkBack Seçenekler Stil
Alt 06-09-2008, 01:49   #1
ยŦยк
 
Constantin - ait Kullanıcı Resmi (Avatar)
 
Opamplar

OPAMPLAROPERASYONEL KUVVETLENDİRİCİLER
Fairchild 1965 yılında, en çok kullanılan Ua709 elemanı piyasaya sunmuştur. Aslında başarısının yanında, bu elemanın birçok dezavantajları da vardı. Bu nedenle de uA741 olarak bilinen op-amp geliştirilmiştir. UA741 çok ucuz ve kolay kullanımı, ayrıca üstün yetenekleri nedeniyle tercih edilmiştir. Değişik firmalar da uaA741 dizaynlarını gerçekleştirmişlerdir. Örneğin Motorolo MCI741 National Semiconductor LM741 ve Texas Instruments SN72741 üretmişlerdir. Bütün bu (monolithic) tek elemanlı işlemsel kuvvetlendiriciler uA741’in eşdeğerleridir. Çünkü bunlar katologlarda da aynı özelliklere sahiptirler. Çoğunlukla insanlar opamp’tan bahsediyorlarsa akıllarına gelen ilk eleman 741 olmaktadır.
741 elemanı endüstri standartlarına uygun hale getirilmiştir. Kural olarak yapacağınız dizaynlarda op-amp kullanılmışsa bunların yerine 741 olarak devreyi kurabilirsiniz. Op-amp olarak 741’in kullanımını anlamışsanız diğer opampları da kolaylıkla kullanabilirsiniz.
Sırası gelmişken 741 farklı versiyon numaralarına sahiptir. 741, 741A, 741C, 741E, 741N, ve diğerleri... Bu farklılıklar bunların gerilim kazançları, sıcaklık farklılıkları, gürültü seviyeleri ve diğer karakteristikleridir. 741C ( Ticari tipte bir elemandır.) çok ucuz ve çok geniş alanlarda kullanılmaktadır. Bunun giriş empedansı 2MW, gerilim kazancı 100.000 ve çıkış empedansı 75 W’dur.
741’İN ŞEMATİK DİYAGRAMI
Şekil 15-1, 741’in basitleştirilimiş şematik diyagramını göstermektedir. Bu devre 741’in eşdeğer devresi olup sonradan üretilen op-ampların temelini teşkil eder.


Devre dizaynlarında her türlü ayrıntılı özellikleri anlamaya ihtiyaç yoktur. Fakat op-amp’ın nasıl çalıştığı hakkında genel bir fikre sahip olabilirsiniz. 741’in ardındaki temel düşünce şudur:
Giriş katı Q1 veQ2 PNP transistörlerinden oluşturulumuş bir fark kuvvetlendiricidir. Bildiğiniz gibi emiterdeki bağlantı elemanları nedeniyle bu devre, akım kaynağı olarak çalıştığı farz edilmiştir. 741’in içinde Q14 akım kaynağı olup emiter direnci yerine geçmektedir. R2 ve Q4’ün polarmasını kontrol ederek fark kuvvetlendiricinin akımını üretir. Fark kuvvetlendirici de kollektör direnci yerine normal direnç kullanarak bunu yük direnci yerine kullanabiliriz. Bu aktif yük Q4 için oldukça yüksek empedanslı bir akım kaynağı olarak çalışır. Bu sebepten fark kuvvetlendiricinin gerilim kazancı daha büyük olmaktadır.
Beyz DC Dönüş Elemanları
Şekil 15-1’de görüldüğü gibi giriş beyzleri boşluktadır. İşlemsel kuvvetlendirici her iki girişe beyz dirençleri RB ve toprak arasındaki DC bağlantılar yoksa çalışmayacaktır. Bu dönüş yolları işlemsel kuvvetlendiriciyi süren devrenin, Thevenin dirençleri tarafından temin edilir. Eğer sürücü devreler kapasitif kublajlı ise mutlaka beyz dönüş dirençlerine ihtiyaç vardır. Bu düşüncenin anahtarı her giriş için beyzden toprağa bir bağlantı olmalıdır. Eğer beyzden toğrağa da bir yol yoksa op-ampın transitörleri kesimde olacaktır.
GİRİŞ EMPEDANSI
Fark yükselticinin giriş empedansı şu şekilde ifade edilir.
R
giriş = 2bre
Fark yükselticideki ortak emiterli bağlantı nedeniyle işlemsel kuvvetlendirici oldukça yüksek giriş empedansına sahiptir. Örneğin 741’in giriş fark kuvvetlendirici (tail) akımı yaklaşık olarak 15uA’dir. Her emiter bu akımın yarısını üzerinden akıtır.
25mV
r
é= _______________= 3.33 kW
7,5uA741’de girişteki her transistörün b’sı tipik olarak b=300 olduğuna göre giriş empedansı:
r
i= 2 (300) . (3,3K) = 2mW
Bu 741’in kataloglarında tesbit edilen giriş direnci değeridir.
Eğer daha yüksek giriş empedansları gerekiyorsa dizayn yapan kişi BIFET (fetgirişli) op-amp kullanma zorunluluğu vardır. Bu op-amp fet’in ve bipolar transitörlerin bir araya getirilmesiyle oluşturulmuştur. Örneğin LF12741-741 olarak modife edilmiş JFET kaynak takip edicinin çıkışı normal 741 op-amp sürmektedir. Bu kombinasyon 741 diğer karakteristikleri ile JFET kaynak takip edici giriş avantajlarını meydana getirmektedir. Bu sebepten LF13741 standart 741 için yedek olarak kullanılabilir.
ŞEMATİK SEMBOLLER
Bir op-ampın şematik sembolü Şekil 15-2 de görülmektedir. A op-ampın gerilim kazancıdır. Faz terslemeyen giriş V1, farz tersleyen giriş ise V2’dir Fark girişi
V
giriş = V1 - V2
V1, V2 gerilimleri ve çıkış gerilim noktalarına dikkat ediniz. Bunun anlamı ölçümlerin daima toprakla bu noktalar yapılmasıdır. Fark girişi Vgiriş iki giriş gerilimi V1, V2 arasındaki farktır.

Biz çoğu zaman Şekil 15-2 de görülen toprak hattını çizerek göstermeyiz. Bunun anlamı toprak noktası olmasa da ölçülen değerlerin toprağa göre olmasıdır.
V
çıkış = A . Vg,iriş



V
çıkış


V
giriş = ________________________
A




741 için A= 100.000 dir ve çıkış empedansı Zçıkış = 75 W’dur. Genellikle opampın çıkışına bağlanan yük direnci Zçıkış ‘dan küçüktür. Vçıkış yaklaşık olarak Vth = Vçıkış değerine eşittir.
Örnek 15-1
Bir 741 giriş gerilimi 1uv’tur. Bu opampın çıkışındaki gerilim ne kadardır?
Çözüm
Giriş gerilimini, gerilim kazancı ile çarptığımızda 741C’nin kazancı 100.000 olduğuna göre çıkış gerilimi:
V
çıkış = 100.000 . (1uV)= 0.1V
Bu cevaptan op-amp çıkışına yük direnci bağlanmadığı farzedilmiştir.
Eğer yük direnci kullanılmış ise Thevenin çıkış geriliminin bir kısmı bu yük üzerinde düşecektir. Eğer yük direnci op-amp çıkış direnci değerinden 100 defa daha fazla ise çıkış direnci üzerinde meydana gelen gerilim düşümünü ihmal edebilirsiniz. 741C’nin çıkış empedansı 75 W olduğuna göre yük direnci 7,5 kW’dan büyük ise yükleme etkisi dikkate alınmayabilir.
Örnek 15-2
Bir 741C’nin çıkış gerilimi 5V ise kazancı 100.000 olan op-ampın giriş gerilimi ne kadardır.
5V
V
giriş = ________________ = 50 uV
100.0000
OP-AMP KARAKTERİSTİKLERİ
Op-amp bir yükselticidir. Ancak problemlerin analizinde ve op-amp devrelerinin dizaynlarında AC ve DC karakteristikleri gözönünde bulundurmamız gerekmektedir. Bu bölümde, ofset problemlerine ve op-ampın performansını etkileyen diğer karakteristikler açıklanacaktır.
ÜÇ ÖNEMLİ KARAKTESTİK
Daha evvel (CMRR) sinyali bastırma oranı tanımlanmıştı. 741C için CMRR= 90 Db düşük frekanslar için uygundur. Common mode sinyalinde arzı edilen sinyal 90Db daha büyüktür. Bunun anlamı yükseltilecek sinyal ortak gürültü CMRR’nin Şekil 18-15’da görüldüğü gibi azalmasına neden olur. Dikkat edilirse CMRR yaklaşık 1KHz’de 75db, 10 KHz’de 56db’dir.
Maksimum tepeden tepeye değeri yükselticinin çıkışından kırpılmadan alınan en büyük değerdir. Op-ampın girişinde herhangi bir sinyal yoksa çıkış ideal olarak sıfırdır. AC çıkış gerilimi pozitif ve negatif yönde salınım yapar. Yük direncinin Zçıkış empedansından büyük olması halinde çıkış gerilimi besleme geriliminde salınım yapar. Örneğin VCE = + 15 V ve V ve VEE = - 15 V olan devrede 10 kW’luk yük direnci uçlarındaki gerilim 30 V olacaktır. Ancak bu gerilim 741C’nin çıkış katından dolayı genelde 27V ve 10 kW yük direncinde 27V, 1 kW’luk yük uçlarında 25 V ve 100 W yük uçlarındaki gerilim ise 7 V kadar olacaktır.
FREKANS TEPKİSİ
741C’nin Şekil 15-5c’de küçük sinyal frekans tepkisi görülmektedir. Orta bandın gerilim kazancı 100.000’dir. 741’in kritik frekansı fc= 10 Hz’dir Şekilde görüldüğü gibi 10 Hz seviyesinde gerilim kazancı %70 kazanç değerini -3 db noktasından düşmektedir. Kritik frekansın üzerinde gerilim kazancı her dekat artışı için 20 db düşmektedir.


Gerilim kazancının bire düştüğü frekans 1 MHz’dir. Kataloglarda bu değer genellikle belirtilir. Çünkü bu değer op-ampın faydalı kazanç üst değerini temsil etmektedir. Örneğin kataloglarda 741C listelerinde f1= 1 MHz. Bunun anlamı 741C sinyali 1 MHz kadar yükselir. Bunun üzerindeki değerlerde çıkış azalmaya başlar. Örneğin LM318’in f1 = 15 MHz’dir. Bunun anlamı op-amp 15 MHz’e kadar çıkışında kazanç verebilir. Bunun üzerindeki değerlerde çıkış azalarak gider.
YÜKSELME HIZI BOZULMASI ( Slew Rate )
Bir 741’in kompanzasyon kapasitesinden dolayı fark yükseltici çıkışı verilen slew rate değerinden daha hızlı değişemez.
I
t
S
r = ________________
Cc
Bir 741C’de It = 15 mA ve Cc = 30 pF’tır. Bu sebepten 741’in slew rate yükselme hızı,
15 mA
S
r = _____________= 0,5 V/us’dir.
30 pF
Bu 741C’nin büyük sinyal sınırıdır. Bunun çıkış gerilimi 0,5 V/us’den daha hızlı değişmez.
Bildiğimiz gibi bir op-ampın yükselme hızı (slew rate) büyük sinyal yüksek frekans tepkisi sınırlar. Eğer sinüs dalganın yükseltilmesindeki başlangıç eğitimi op-ampın yükselme hızından daha büyük ise çıkış küçülmeye başlar ve girişteki sinüsodial dalga üçgen olarak görülmeye başlar. Daha evvel biz bu eşitliği güç band genişliği olarak ifade ettik.
S
r
f
max = ___________
2n Vp
Bu yüksek frekansta yükselme hızı oranında bir bozulma olmadan 2n değerine bölünerek elde edilen tepe geriim değeridir. Faydalı olan alternatif eşitlik:
S
r
Vp = _______________
2n f
max


Örnek 15-3
Şekil 15-6, 741C’nin ayak numaralarını göstermektedir. 3 Nolu giriş faz çevirmeyen giriştir. 7 ve 4 nolu ayaklar güç kaynağı bağlantılarıdır. 6 nolu ayak ise çıkıştır. Bir 741C’nin en kötü şartlar altında kataloglarda verilen değerleri
V
BE = 2 mV, lgiriş = 80 nA ve Igiriş = 20 nA
En kötü durumdaki istenmeyen giriş gerilimi toplamı nedir? Çıkış ofset gerilimi nedir?
Çözüm
İstenmeyen giriş geriliminde iki farklı kompanent vardır. Önce farklı VBE eğrilerini etkileyen faktör. İkinci olarak farklı b’da değerleri iki beyz gerilimini 3 ve 2 nolu ayaklardaki farkını transfer etmektedirler.
V
giriş = +2mV +(20nA) . (220 kW) = +6.4mV
Bunun anlamı istenmeyen giriş gerilimleri - 6,4 mV ile + 6.4 mV arasında herhangi bir yerde olabilir. En kötü durumda bunun büyüklüğü 6.4 mV olabilir.
741C lineer bölgede çalışıyorsa ve onun gerilim kazancı 100.000’dir. Buna göre ofset gerilimini hesaplayacak olursak
V
çıkış = 100.000 (+ 6.4 mV) = +640V
Bu cevap saçmalık örneği olarak ve azaltılması gereken bir değer olarak gözönüne alınmalıdır. Çünkü 640V imkansızdır.
Bu saçma sonuçtan sonra şunu söyleyebiliriz: Sonuçta op-amp doyuma ulaşmıştır ve op-amp lineer bölgede çalışmaktadır ve bu doğrudur.
Oysa bir 741C’nin maksimum (tepe to tepe) tepeden tepeye vereceği çıkış +27 V olabilir. Yani -13,5 V ile +13,5 V volt arasında salınım yapar. Giriş gerilimi +6,4 V olduğu zaman op-ampın çıkışı 13,5 V’ta gider. Giriş gerilimi olduğu zaman çıkış -13,5 V’ta gider.
Örnek 15-4
Bir önceki örnekte kullanılan katalog bilgilerini kullanarak op-amp çıkışını doyuma götürecek ofset giriş gerilimini bulunuz.
Çözüm
Pozitif taraftan bakılacak olursa op-amp +13,5 V doyuma ulaşmadan (swing) salınım yapılacaktır. Op-amp kazancı 100.000 olduğuna göre giriş gerilimi
13,5 V
V
giriş =_______________=0,13 mV
100000
Bu en kötü durum olarak ifade edilen değerden 6,4mV’tan çok küçüktür.
Örnek 15-5
Bir 741C’nin yükselme hızı 0,5 V/usn’dir Çıkış gerilimi tepe değeri 10 V ise band genişliği nedir?
Çözüm
Yükselme hızında bir bozulma olmadan hesaplanan maksimum değer
0,5 V/us
f
max = ________________=7,96 kHz
2n . 10V
Bu frekansta op-amp bozulmamış sinüsodial çıkış sinyali tepe değeri 10V’tur. Eğer giriş frekansını 7,96 kHz’in üzerine çıkarırsanız çıkıştaki değerde bir azalım başlar. Girişin sinüsodial olmasına karşın çıkışta üçgen dalgalar görülmeye başlar.
Örnek 15-6
50 kHz’lik giriş sinyallerinde çıkışta alınan sinyallerin bozulmadan alınabilecek değeri nedir?
0,5 V/usn
VP = _______________=1,59 V
2n . (50 kHz )Bunun anlamı op-amp frekansı 50 kHz ve giriş sinyalinin tepe değeri 1,59 V olan sinyalin çıkıştan bozulmadan alınabilir demektir.
ENTEGRE DEVRELERİNİN DİĞER LİNEER KULLANIMLARI
Aslında op-amplar çok önemli entegre devreleridir. Onları birçok değişik kullanımlar için genişletebilirsiniz. Burada birkaç kullanım özet olarak verilmiştir.
SES YÜKSELTİCİLER
Ön yükselticiler çıkış gücü 50mW’tan daha az olan bu ses yükselticilerdir. Ön yükselticiler oldukça düşük gürültü seviyesine sahip olmalıdırlar. Çünkü bunlar ses sistemlerinin girişinde kullanılmakta olup, manyetik band kristallerden ve mikrofonlardan gelen zayıf sinyalleri yükseltmektedir.
Entegre edilmiş ön yükselticiye örnek LM381 düşük gürültülü çiftli bir ön yükselticidir. Her bir yükseltici birbirinden tamamen farklıdır. LM381’in gerilim kazancı 112 db’dir ve 10V’da güç band genişliği 74kHz ve 9V’tan 40V’ta kadar pozitif besleme ile çalışır. Giriş empedansını 100 kW, çıkış empedansı 150 W’du. Lm381’in giriş katı, fark kuvvetlendirici olup tekli çıkışa sahiptir.
Ses güç yükselticiler çıkışlarından 500 mW’tan fazla güç alınmaktadır. Bunlar phonograph yükselticiler AM, FM radyolar ve diğer kullanımları bulunur. LM380 bir örnektir. Bunun gerilim kazancı 34db band genişliği 100 kHz ve çıkış gücü 8W’tir.
Video Yükselticiler
Bir video veya geniş band yükseltici geniş bir frekans bandında sabit gerilimi kazancı düz bir tepki gösterir. Tipik olarak band genişliği MHz bölgesindedir. Video yükselticilerde DC yükselticiler gerekli değildir. Fakat çok düşük frekanslarda çok yüksek frekanslara kadar (range) değere sahiptirler. Örneğin bir çok osilaskoplarda frekans değeri 0’dan 100-MHz’e kadar gider. Bu tür cihazlarda video yükselticiler kullanılması sinyal genliğini arttırır. Diğer bir örnek televizyon alıcılarıdır. Kullanılan frekans yaklaşık 0’dan 4MHz’e kadardır.
RF ve IF Yükselticiler
Bir radyo frekans ( RF) yükseltici TV alıcılarında veya AM-FM alıcılarda umumiyetle ilk kattır. Orta frekans (IF) yükselticilerde tipik olarak orta katlardadırlar. Entegre devreler LM703 RF ve IF yükselticiler aynı chip içinde bulunurlar. Yükselticiler ayarlı yapılmak suretiyle yalnız dar band frekansında kullanılabilirler. Bu televizyon ve radyo istasyonlarının arzu edilen sinyallerinin alınmasına (tuning) ayar devreleri ile mümkün kılar. Daha evvel bahsedildiği gibi büyük kondansatör ve self değerlerinin chip içine yerleştirilememesi nedeniyle dışarıdan LS ve CS elemanlar ayar yükselticilerine bağlanırlar.
GERİLİM REGÜLATÖRLER
Bölğm 4’te doğrultmalı güç kaynakları açıklanmıştı. Filtre işleminden sonra DC gerilimde biraz daha riplle kalmaktadır. Bu DC gerilim hat gerilimi ile orantılıdır. Hat gerilimi %10 değişirse bu da seviye de %10’luk değişmeye sebep olur. Birçok uygulamalarda %10’luk değişme DC gerilim değeri oldukça fazladır ve bu sebepten DC regülasyon gereklidir.
Yeni entegre devrelerde LM340 serileri bu iş için kullanılmaktadır. Bu tipte chipler çıkış DC gerilimini %0,01 olarak hat geriliminin ve yük direncinin değişmesini tutarlar. Diğer bir özellik olarak pozitif ve negatif ayarlanabilen çıkış gerilimleri ve kısa devre koruma sağlarlar.



OP-AMPLARIN TEMEL KULLANIMLARI
İşlemsel kuvvetlendiriciler terim olarak analog bilgisayarların alan örneklerindendir. Bu tipteki yükselticiler matematiksel işlemlerin, toplama, çıkartma, çarpma, bölme, integral, türev ve logoritma alma gibi uygulamalarında başarılı bir şekilde kullanılmışıtır. Aslında op-amplar çok geniş bir alanda kullanılmalarına karşın hala orijinal isimleri kullanılmaktadır.
Temelde op-amp yüksek gerilim kazancı DC fark kuvvetlendiriciler olup aşağıdaki karakteristikleri taşımaktadır.
Sonsuz band genişliği,
Sonsuz giriş empedansı,
Sıfır çıkış empedansı,
Şekil 15-8 a’da görülen op-amp (+) pozitif noninvert ve (-) negatif invert girişli ve tek çıkışa sahiptir. İlave olarak op-amp normalde çift kaynaklı + 5 V’dan + 18V’a kadar gerilim uygulanan bir elemandır.



Tek besleme kullanıldığında + 5 V’dan +15 ve -5 V’dan -15V’a kadar toprakla arasında bağlantı yapılan bir beslemeye sahiptir
Aslında op-amp tek bir pozitif polarite ile de beslenebilir. Ancak, op-ampların daha çok çift kaynakla beslemek adet olmuştur. Şekillerde besleme uçları bağlantı gösterilmeden görebilirsiniz.
Daha evvel bahsedildiği gibi op-amp iki girişi sahiptir. Bu iki giriş arasındaki fonksiyon fark aşağıda izah edildiği gibidir.
Eğer sinyal op-ampların (+) noninvert girişine uygulanmış ise çıkış girişte aynı fazda olacaktır. Giriş sinyali pozitife gittiği zaman çıkışta pozitife gider.
Eğer sinyal op-ampların (-) girişine (invert) uygulanmış ise çıkış 180 C faz farklı olarak veya yarım saykıl olarak çıkacaktır.
Bunun anlaöı giriş sinyali pozitife gittiği zaman çıkış negatife gider veya girişin tersi olan çıkış alınır. Şekil 15-10’da görülüyor. Bu bölümde op-amp devrelerin aktif olarak ve geri besleme elemanları ile çıkış sinyalinin giriş sinyaline göre nasıl değiştiğini, op-amp karakteristikleri üzerinde duracağız.

TERSLEYİCİ YÜKSELTİCİ
Op-ampın bir tersleyici yükseltici olarak kullanımı Şekil 15-11 deki bağlantısında görülmektedir.RA ve RB geri besleme elemanı olarak isimlendirilir. Bu devre için her iki elemanda dirençtir. Giriş topraklanmıştır. RB direnci çıkış geriliminden geri besleme olarak tersleyici girişine bağlanmıştır. RA ve RB terimleri çıkış geriliminin saptanmasında kullanılır.
R
B
V
çıkış = ___________________ . Vgiriş


R
A
Sonuç olarak gerilim kazancı, çıkış geriliminin giriş gerilimine oranıdır.
Vçıkış RB
Gerilim kazancı = ___________=__________
Vgiriş RA
GERİLİMİ TAKİP EDİCİ
Gerilim takip edici bazen tampon emiter takip edici veya katod takip edici ile aynı fonksiyona sahiptir. Bu sebepten oldukça yüksek giriş empedansı ( 100 kW’dan büyük ) ve çok düşük çıkış empedansı ( 750 W’dan küçük ) değere sahiptir.
Gerilim takip edici faz terslemeyen yükselticiye benzemekte ancak, RA= Sonsuz ve RB = 0 bu sebepten de gerilim kazancı daima eşittir.
TOPLAMA YÜKSELTİCİSİ
İki veya daha bağımsız giriş sinyalini toplamak istiyorsak toplama yükseltici devresini Şekil 15-14’de kurmak gerekmektedir. Bu devre tersleyici yükseltici devreye iki girişi hariç V1 ve V2 aynıdır.
Gerilim kazancı her giriş için geri besleme RB direnci ile giriş direnci tarafından sağlanır.
Vçıkış RB
Gerilim kazancı A = _________=___________
V1 R1
Vçıkış RB
Gerilim kazancı AV = ___________=______________
V2 R2
Böylece çıkış gerilimi,
RB RB
Vçıkış = ________________ . V1 + __________________ . V2
R1 R2
Daha faydalı devre, Şekil 15-14’da görülen devredir.


Aslında bu devre biraz daha karmaşık görülmektedir. Analiz oldukça basit olup, bu bölümde öğrendiklerimizle halledebiliriz. Önce V3 noktasının toprağa kısa devre olduğunu farz edelim. Bu durumda, devreniz toplama devresidir. Şekil 15-14’de görüldüğü gibi toplama yükseltici çıkış gerilimi eşitliğinde verilmiştir.
İkinci olarak giriş sinyalleri V1 ve V2 toprağa kısa devredir. Şimdi de bir faz terslemeyen yükseltici olup R1 ve R2 dirençleri paralel duruma getirmişti,r. Bu ifade Şekil 15-14’de RA olarak görülmektedir.
R1 . R2
RA= __________________
R1 + R2Gerçek faz terslemeyen giriş gerilimi ki op-amp V3 görür ki gerilim bölücü eşitliğinin V3 ile ilişkisidir.
R4
V3= ______________ . V3
R3 + R4Faz terslemeyen çıkış gerilimi eşitliğinden,
RF
V
çıkış = (1 + ______________ ) V3
RA
Daha evvelki eşitlikleri nazarı dikkate alırsak;
R1.R2.RF.R1+R1.R2 R4
V
çıkış = (_________________________________) ( __________________________) V3
R1 . R2 R3+R4

İNTEGRAL
Tersleyici yükseltici devrenin geri besleme direncinin bir kondansatörle değiştirilmesi Şekil 15-15 ‘daki İntegral devresi oluşturulmuş olur.



Giriş sinyali integral eğrisinin altındaki alanı temsil etmektedir. Çıkış gerilimi aşağıdaki eşitlikle verilmiştir.
1
V
çıkış = _____________________ Vgiriş. DT
RA. C01
________ terimi en küçük giriş frekansı beklenen değere uygun olmalıdır. Böylece ;
RA. C
1
RA . C = _____________________
2n F
min
İntegral sonuç olarak çıkışta ofset gerilimi yaratılmasına sebep olacaktır. Bunun sebebi de beyz akım ofsetidir.
Çıkış ofset gerilimini minimuma indirebilmek için faz terslemeyen girişe RA değerinde bir dirençle toprağa bağlantı yapılır.



TÜREV DEVRESİ
İntegral devresi olarak kullandığımız şemada girişe kondansatör çıkışa ise direnç ilave ettiğimizde yani integral devresindeki dirençle kondansatörü yer değiştirdiğimizde elde edilen devre türev devresidir.


Türev çıkışı giriş sinyalinin türevi ile orantılıdır. Görülen devrede F= 2000 Hz, 2.5 V, üçgen dalga çıkış A 10 V kare dalgadır.
Girişe verilen kare dalgalar çıkışa aşağıdaki görülen pasler biçiminde transfer edilecektir.
F= 2 Khz V = 10 V V1 = 0.5 V Çıkış= 7V
Constantin Ofline   Alıntı ile Cevapla
Alt 06-09-2008, 01:54   #2
Banned
 
|RespecT Me| - ait Kullanıcı Resmi (Avatar)
 

Teşekkürler...
__________________
ARKADAŞLAR SİZLERİ SALAK YERİNE KOYMAYA ÇALIŞTIM ANCAK BAŞARILI OLAMADIM. FORUM YÖNETİMİNİ ENAYİ YERİNE KOYMAYA ÇALIŞTIM ANCAK BAŞARAMADIM. SİZDEN DİLENEREK ALDIĞIM REPLERİ FORUM YÖNETİMİ SİLDİ. ŞİMDİ İSE BEN BUNA İSYAN EDİYORUM. BEN BİR MALIM!
Click the image to open in full size.
|RespecT Me| Ofline   Alıntı ile Cevapla
Cevapla

Bu konuyu arkadaşlarınızla paylaşın


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık




Türkiye`de Saat: 22:04 .

Powered by vBulletin® Copyright ©2000 - 2008, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.3.2

Sitemiz CSS Standartlarına uygundur. Sitemiz XHTML Standartlarına uygundur

Oracle DBA | Kadife | Oracle Danışmanlık



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580